Мультиплексирование физических каналов связи икс. Мультиплексирование в сетях передачи данных. Смотреть что такое "Мультиплексирование" в других словарях

Процесс мультиплексирования представляет собой процедуру уплотнения данных для передачи такого потока по общей линии связи с целью значительного повышения пропускной способности информационного канала (Рис 1). Коммутационное устройство, способное создавать уплотненные потоки данных, называется мультиплексором (MUX). Обратный процесс, т.е. разуплотнение данных, называетсядемультиплексированием. А устройство с такой коммутацией именуется демультиплексором (DEMUX).

Рис 1. Мультиплексирование и демультиплексирование данных

Существует три основных метода мультиплексирования:
- частотное мультиплексирование (FDM, Frequency Division Multiplexing) или, более точно, мультиплексирование с разделением частоты
- временное мультиплексирование (ТDM, Time Division Multiplexing) или мультиплексирование с разделением времени
- волновое мультиплексирование (WDM, Wavelength Division Multiplexing) или мультиплексирование с разделением по длине волны.

Частотное мультиплексирование (FDM).
Мультиплексирование с разделением частоты (Рис 2) используется в телефонных сетях для организации передачи голосового сигнала, а также может применяться в кабельном телевидении.

Рис 2. Частотное мультиплексирование и демультиплексирование

Основная идея частотного мультиплексирования заключается в следующем. На первом этапе идет процесс разделения общего широкополосного канала связи на отдельные полосы частот (подканалы), на которые накладываются абонентские частотные диапазоны. На втором этапе, чтобы избежать взаимного влияния уплотненных пользовательских диапазонов, в каждый подканал добавляется страховая частотная неинформативная полоса, так называемая полоса расфильтровки. Речевой спектр гармоник включает в себя ширину частот от 300 Гц до 3400 Гц. Таким образом, размер каждого подканала равен 4 кГц, где 3,1 кГц - голосовой информативный диапазон + 0,9 кГц - полоса расфильтровки. В методе частотного мультиплексирования предусмотрено три стандартизованных уровня иерархии уплотненных абонентских подканалов:
1-ый уровень, базовая группа - 12 абонентских подканалов в полосе шириной в 48 кГц от 60 кГц до 108 кГц. Этот стандарт наиболее распространенный.
2-ой уровень, супергруппа - 5 базовых группа (60 абонентских подканалов) в полосе шириной в 240 кГц от 312 кГц до 552 кГц.
3-ий уровень, главная группа - 10 супергрупп (600 абонентских подканалов) в полосе шириной 2520 кГц от 564 кГц до 2048 кГц.
Надо сказать, что в использовании метода мультиплексирования с разделением частоты появился некий парадокс. С одной стороны, эта техника уплотнения аналоговых данных (FDM) стала уступать технике уплотнения цифровых данных (TDM) из-за своего существенного недостатка – появления шумов при наращивании усиления голосового сигнала. А с другой стороны с использованием оптического волокна в качестве новой среды передачи данных явился на свет (оборот в тему!) метод волнового уплотнения светового излучения (WDM). А волна и частота, как известно, – обратно пропорциональные параметры. По сему, частотное мультиплексирование логически “влилось” в волновое мультиплексирование. Повысился статус!

Временное мультиплексирование (TDM).
Мультиплексирование с разделением по времени (Рис 3) широко применяются в сетевых технологиях PDH, SDH/SONET, АТМ, Ethernet, PON.

Рис 3. Временное мультиплексирование и демультиплексирование

Суть этого метода мультиплексирования с разделением времени заключается в следующем: с помощью TDM-мультиплексора входные абонентские каналы последовательно подключаются к общему каналу связи на определенный интервал времени, так называемый тайм-слот, а на приемной стороне демультиплексор разуплотняет общий поток на отдельные выборки и распределяет их по соответствующим приемным абонентским каналам.

Волновое мультиплексирование (WDM)
Мультиплексирование с разделением дины волны появилось с возникновением оптического волокна. Волновое мультиплексирование - процедура уплотнения спектра оптических инфракрасных волн, использующая уникальное свойство оптического волокна на WDM-мультиплексирование (Рис 4). Суть этого явления такова: на одном оптическом волокне с помощью волнового оптического мультиплексора появилась возможность уплотнить целый спектр несущих лазерных волн и соответственно на стадии приема - разуплотнить этот световой поток на отдельные волны, используя оптический демультиплексор. Такая возможность значительно увеличивает пропускную способность волоконно-оптических линий связи (ВОЛС).

Рис 4. Волновое мультиплексирование и демультиплексирование

Путь развития способов мультиплексирования с разделением по длине волны шел по следующей схеме: WDM → DWDM → HDWDM → CWDM, где
1-ый этап: 2-х и 3-х канальное мультиплексирование (WDM)
2-ой этап: плотное мультиплексирование (DWDM) до 88 каналов
3-ий этап - высокоплотное мультиплексирование (HDWDM) до 256 каналов
4-ый этап - разреженное мультиплексирование (CWDM) до 16 каналов.
Исторически первыми появились двухволновые WDM-сплиттеры, работающие в дуплексном режиме на длинах волн из второго и третьего окон прозрачности оптического волокна в 1310 нм и 1550 нм (см. в рубрике “Полезная информация” нашего сайта под названием “Окна прозрачности и спектральные диапазоны оптического волокна”). Позже в WDM-сплиттер была добавлена третья волна в 1490 нм. Такие недорогие мультиплексоры в силу своей простоты при установки и подключении незаменимы в оптических сетях типа PON. Пара волн 1310/1490 нм, работая в интерактивном режиме, используется в Интернете и IP-телефонии. А волна 1550 нм предназначена для кабельного телевидения. Появление плотного мультиплексирования DWDM (Dense WDM) было связано с потребностью увеличения пропускной способности оптических сетей (PON) и волоконно-оптических линий связи (ВОЛС). Но только тогда DWDM стало реальным и эффективным, когда в ВОЛС начали внедрять оптические эрбиевые усилители (EFDA). И тут встала необходимость выбрать и стандартизировать три главных определяющих параметра при таком способе уплотнения оптического сигнала: опорная волна, диапазон рабочих частот и шаг между каналами. Выбор пал на волну 1550 нм из второго окна прозрачности оптического волокна. Задание спектрального диапазона и расстояния между каналами определяет, так называемый, частотный план или частотная сетка. Для DWDM по рекомендации ITU-T G.694.1 определен частотный план в волновом диапазоне 1528.77 – 1568.77 нм с шагом 0.8 нм или в частотном измерении в промежутке 196.1 – 191.1 ТГц с шагом 100 ГГц. В настоящее время разработан частотный план с уменьшенным шагом в 50 ГГц (0.4 нм) для высокоплотного мультиплексирования HDWDM (High Dense WDM), а в экспериментальных системах уже предлагается HDWDM c частотными сетками с канальными промежутками в 25 ГГц (0.2 нм) и 12.5 ГГц (0.1 нм)!
Однако процесс высокоплотного мультиплексирования не может быть бесконечен и безусловно имеет свой логический предел. И главным критерием востребованности систем типа HDWDM является прежде всего цена приемо-передающих компонентов ВОЛС. Для сравнительно недорогого и качественного волнового уплотнения было разработано разреженное CWDM (Coarse WDM) мультиплексирование с частотным планом (ITU-T G.694.2) в диапазоне 1270 – 1610 нм с шагом 20 нм, Такая частотная сетка задает 18 частот для мультиплексирования от 4 до 16 каналов.
Широкое применение оптического волокна в технологиях PON и FTTH с использованием волнового спектрального мультиплексирования в каналах ВОЛС привело к кардинальному прорыву в области построения актуальных сетей передачи данных с высочайшей скоростью и небывалой пропускной способностью.

Теперь о множественном доступе. Множественный доступ - это способ разделения общего ресурса канала связи между участниками информационного обмена. При этом эффективность и достаточность множественного доступа как такового и как процедуры коллективного взаимодействия пользователей, может состояться только при наличии технологии, значительно увеличивающей пропускную способность канала связи. В этом контексте множественный доступ в зависимости от того, какая схема работает на увеличение пропускной способности канала связи, разделяется на следующие типы:

С использованием методов мультиплексирования
- множественный доступ с разделением частоты (FDMA)
- множественный доступ с разделением времени(TDMA)
- множественный доступ с разделением по длине волны(WDMA).

С использованием других методов
- множественный доступ с передачей полномочия или маркера (ТРМА)
- множественный доступ с прослушиванием несущей и обнаружения коллизий (CSMA/CD).

Множественный доступ ТРМА использует детерминированный маркерный метод передачи данных, иногда такой способ именуется эстафетным, так как право передачи запускается по эстафете от абонента к абоненту. Этот метод предполагает обязательно кольцевую топологию расположения абонентов, причем строятся два кольца: одно кольцо является резервным в случае аварийных ситуациях или сбоях. Суть метода такова. По кольцу непрерывно вращается маркер (token), специальный управляющий пакет. Отсюда еще одно название метода – токеновый! Так вот, если маркер свободный - он дает право абоненту на передачу. Абонент, получивший свободный маркер, делает маркер занятым, присоединяет к нему свой пакет информации и пускает такую посылку по кругу. Остальные абоненты в кольце анализируют эту посылку на предмет адресата. Если абоненту не адресована посылка, он пускает ее по кругу. Если абонент находит в посылке свой адрес, он принимает инфо, маркер помечает как принятый и пускает посылку снова по кольцу. Передающий абонент, получивший обратно свою посылку с отметкой о приеме, удаляет свой информационный пакет, помечает token (маркер) как свободный и отправляет чистенький token дальше по кольцу. Все снова повторяется. Множественный доступ с передачей маркера успешно применяется в технологиях Token Ring и FDDI.

Множественный доступ CSMA/CD использует метод коллективного доступа с опознаванием несущей частоты и обнаружением коллизий. Такой множественный метод доступа не позволяет создать коллизию, т.е. ситуацию одновременной передачи данных по общему каналу нескольких пользователей. Информационной единицей является кадр, наложенный (модулированный) на несущую частоту (5-10 МГц). Заголовок кадра содержит адреса отправителя и получателя кадра. Принцип работы такого доступа основан на двух основополагающих моментах: первый, каждый абонент определяет ситуацию, когда он может передать кадр, второй, каким образом должен вести себя передающий абонент в случае одновременного начала передачи кадра другим абонентом. Ситуация – свободен канал связи или нет, определяется прохождением по каналу несущей информацию (кадр) частоты. Чтобы уловить суть алгоритма данного метода, рассмотрим работу абонента №1. Итак, абонент №1, которому необходимо передать данные, определил, что в канале связи присутствует несущая, т.е. канал связи занят: наш абонент берет технологическую паузу (9.6 мкс). После паузы он опять переходит в режим прослушивания канала связи на предмет несущей частоты, Несущая – есть! Кто-то ведет передачу, абонент №1 снова берет технологическую паузу. Несущей – нет! Канал связи свободен, начинается передача кадра. Сразу же передающий абонент №1 следит за состоянием канала связи на факт обнаружения коллизии. Все пользователи участвуют в прослушке канала, анализируя пришедший кадр, и тот абонент, чей адрес записан в заголовке кадра, начинает прием кадра. Остальные абоненты игнорируют “чужой” кадр. Если абонент №1 не обнаружил коллизию в течение всей передачи кадра, процесс приема-передачи инфо заканчивается корректно. Если абонент №1 обнаружил факт коллизии, передача кадра прекращается, абонент №1 вбрасывает в канал связи специальный сигнал, получив который одновременно сработавший пользователь прекращает свою передачу, а наш абонент берет случайную паузу, после которой он пытается продолжить передачу текущего кадра по вышеуказанному алгоритму. В схеме алгоритма заложено 16 попыток, чтобы корректно завершить прием-передачу текущего кадра. Если из-за коллизий все-таки не получается завершить передачу текущего кадра в рамках данного алгоритма, такой злосчастный кадр просто отбрасывается передающим абонентом №1 и его приемным визави. Далее – опять кто первый! Множественный метод с опознаванием несущей и обнаружения коллизий хорошо зарекомендовал себя в сетях Ethernet.

Не затрагиваем другие схемы множественного доступа, которые применяются в беспроводной связи таких, как: CDMA (с кодовым разделением), OFDMA (с ортогональным разделением частот), SDMA (с пространственным мультиплексированием). Эта тема другой статьи.

В локальных и особенно в протяженных сетях емкости магистральных линий связи обычно значительно превышают емкости передач отдельных приложений. Это делается с целью одновременной передачи множества таких приложений. Дополнительно, сами приложения могут иметь разную природу, например, это может быть передача постоянного битового потока или передача файлов данных, С целью повышения эффективности передающей среды (носителя) и ее адаптации под множество разнородных приложений применяется передача одновременно сразу нескольких информационных сигналов в одном носителе - мультиплексирование.

Различают два основных вида мультиплексирования:

Частотное мультиплексирование FDM: каждому сигналу отводится определенная доля всей частотной полосы носителя, так что на одном носителе существуют одновременно сразу несколько сигналов.

Временное мультиплексирование TDM: сигналу каждого приложения выделяется вся полоса носителя, но на короткий промежуток времени - таймслот, так что мультиплексный сигнал представляется в виде последовательности сменяющих друг друга тайм-слотов, ответственных за разные приложения. В рамках TDM различают синхронное мультиплексирование (каждому приложению соответствует тайм-слот (возможно несколько тайм-слотов) с определенным порядковым номером в периодической последовательности слотов, и асинхронное или статистическое мультиплексирование, когда приписывание тайм-слотов приложениям происходит более свободным образом, например, по требованию.

На рис. 5.1 показаны схемы размещения каналов при FDM и TDM.

Устройство, принимающее несколько каналов от разных приложений (например, голос, видео, данные) и передающее их в виде мультиплексного сигнала на одном носителе, называется мультиплексором MUX, а устройство, выполняющее обратную функцию на другом конце - демультиплексором DEMUX. Обычно в системах двунаправленной связи функции мультиплексирования и демультиплексирования совмещаются в одном устройстве, которое также называется мультиплексором.

Частотное мультиплексирование FDM

Частотное мультиплексирование (рис. 5.1 а) распространено в системах беспроводной радиосвязи, в мобильных телефонных системах, в абонентских телевизионных системах, включая кабельное телевидение и телефонию. Каналы, представленные в мультиплексном сигнале, могут быть как аналоговыми, так и цифровыми.

В сетях широковещательного телевидения сначала исходные низкочастотные телевизионные сигналы от передающих устройств смещаются посредством модуляции в определенные, отведенные специально для них области спектра - каждой области отводится полоса 6,5 МГц. Затем такой мультиплексный широкополосный сигнал (до 860 МГц) распространяется по эфиру или в коаксиальной кабельной системе от локальных студий кабельного телевидения к абонентам.

Разновидностью FDM является волновое мультиплексирование WDM, применяемое в волоконно-оптических системах передач. Преимущественно используется область спектра от 1,3 нм (230 ТГц) до 1,6 им (188 ТГц). Для плотного волнового мультиплексирования используется область спектра 15301560 нм.

Синхронное временное мультиплексирование

Синхронное мультиплексирование объединяет n низкоскоростных цифровых каналов (или n периодически повторяющихся равных по длительности тайм-слотов) внутри одного носителя, С целью лучшей синхронизации непрерывного битового потока, в мультиплексорах используются таймеры с высоким стандартом частоты. На рис. 5.1 б показана схема следования таймслотов при12-канальном TDM. Тайм-слоты с номером 1 соответствуют первому приложению, с номером 2 - второму и т.д. Емкость отдельного приложения - емкость тайм-слота - равна W/n, где W - полная полоса носителя. Емкие приложения могут занимать полосу в несколько тайм-слотов.

Рис. 5.1. Основные виды мультиплексирования

Если от одного из приложений не поступают данные, мультиплексор не сбрасывает тайм-слоты этого приложения в скоростном канале и оставляет для него прежнюю полосу W/n. Никакому другому приложению эта полоса не доступна. Более того, ни одно из приложений не может получить большую полосу пропускания, чем ту, которая отводится. Это особенность синхронного мультиплексирования.

Мультиплексирование может происходить на октетном, битовом или кадровом уровне.

При мультиплексировании на октетном уровне последовательности в 8

битов от каждого из n приложений - октеты - циклически сменяют друг друга. Задержка на время буферизации одного октета возникает между входным низкоскоростным и выходным мультиплексным потоками.

При мультиплексировании на битовом уровне происходит побитовое смешивание входных потоков. Более критичными, в этом случае, становятся требования к временным характеристикам, но и уменьшается задержка, вносимая мультиплексором. В городских коммутируемых телефонных сетях мультиплексирование на битовом уровне используется при построении скоростных мультиплексных каналов.

При мультиплексировании на кадровом уровне кадры (специальные битовые последовательности с заголовком, сигнальными полями и полями данных) из входных низкоскоростных каналов смешиваются в выходном мультиплексном канале. Этот вид мультиплексирования характерен при построении асинхронных мультиплексоров,

Логическая топология определяет характер движения данных в мультиплексном канале. Три основных типа логической топологии могут иметь синхронные мультиплексные системы: соединение "точка-точка", цепное соединение и кольцевое соединение, рис. 5.2. Допускаются более сложные смешанные логические топологии.

Рис. 5.2. Основные типы логической топологии мультиплексных систем

Рис. 5.3. физическая топология "двойное ТОМ кольцо" повышает надежность сети в случае повреждения одного из сегментов сети или выхода из

строя одного из мультиплексоров

Физическая топология определяет структуру кабельной системы. Для повышения надежности сложные мультиплексные сети, использующие логическую топологию "кольцо", делают с использованием физической топологии "двойное кольцо", рис. 5.3. В нормальном состоянии активно первичное кольцо - по вторичному кольцу данные не идут. При повреждениях канала связи или одного из мультиплексоров происходит свертывание логического кольца с восстановлением его целостности, при котором активизируется вторичное кольцо - общая целостность сети также сохраняется. Физическая топология "двойное кольцо" используется и в сетях SDH, а также в некоторых локальных сетях Token Ring, DQDB, FDDI.

По каждому из каналов мультиплексор может поддерживать одну из шести функций выделения, добавления или пропускания каналов (drop-add-pass), рис. 5.4:

1. "Drop & Add" (выделение и добавление канала). Эту функцию могут поддерживать мультиплексоры как при цепной (на промежуточных узлах), так и при кольцевой логических топологиях. При цепной топологии один выходной канал может быть заменен на другой, например, при использовании специальных мультиплексоров для межстудийного обмена в сетях цифрового кабельного телевидения. При кольцевой топологии этой функцией могут обладать два или более мультиплексоров, которые сообща используют данный TDM канал, например, при организации удаленной связи сетей Ethernet или Token Ring. Фактически происходит подмена информации в соответствующих тайм-слотах.

2. "Drop & Pass" (выделение и пропускание). Эта функция наиболее характерна для физической топологии "цепная линия". Основная задача - размножить информационный поток. Структура ретранслируемых в мультиплексный канал тайм-слотов остается без изменения.

3. "Pass Only" (только пропускание). Эта функция обычно автоматически отрабатывается мультиплексором, если в физический слот мультиплексора, соответствующий данному каналу (номеру

4. "Terminate & Add" (прервать и добавить). Эта функция подменяет информацию в тайм-слотах соответствующего канала на новую, взятую из входного низкоскоростного канала. Прежняя информация не выводится наружу и становится недоступной как для текущего, так и для последующих мультиплексоров. Эта функция фактически предназначена для начального (мастер) мультиплексора при физической топологии "цепная линия".

5. "Drop Only" (только выделение). Эта функция характерна для конечного мультиплексора при физической топологии "цепная линия".

6. "Terminate" (прерывание). Эта функция характерна для конечного мультиплексора при физической топологии "цепная линия". Функция автоматически отрабатывается конечным мультиплексором, если в физический слот мультиплексора, соответствующий данному каналу (номеру тайм-слота), не установлен ни один модуль.

Рис. 5.4. функции выделения, добавления и пропускания канала

В практических реализациях скоростной мультиплексный канал строится преимущественно на основе волоконно-оптического интерфейса. Существует огромное разнообразие мультиплексоров, использующих волоконно-оптическую TDM-магистраль.

Оптический модем-мультиплексор Optimux производства PAD. Внешний вид и схема включения модема показаны на рис. 5.5, а в табл. 5.1 приведены технические характеристики.

Рис. 5.5. Внешний вид и схема подключения оптического модема-

мультиплексора Optimux производства RAD Data Communications

Аналогичные оптические модемы-мультиплексоры, также широко используемые на российском рынке, выпускаются фирмамиADC Telecommunications - продукт Quad Fiber Loop Converter, 4xE1 ; и Pan Dacom - продукт FME-H, 6xE1 )

Таблица 5.1. Основные технические характеристики оптического модема-

мультиплексора Optimux производства PAD Data Communications

Модульный ТОМ мультиплексор MagnumPlus фирмы ADC Kentrox. Это -

более универсальное и более мощное решение, допускающее передачу множества различных протоколов. Его основные характеристики приведены в табл. 5.2.

Отметим, что логическая топология взаимодействия мультиплексоров MagnumPlus по TDM магистрали базируется на кольце, в то время как физическое соединение может быть как точка-точка, кольцо, или цепная линия. Кольцевая логическая топология необходима для дистанционного мониторинга и управления мультиплексорами на основе TDM магистрали.

При инициализации TDM магистрали одно из устройств автоматически выбирается мастером - по нему синхронизируются все остальные устройства. При подключении мультиплексоров через сеть SDH, синхронизация происходит от SDH магистрали.

Таблица 5.2. Основные технические характеристики мультиплексора

Модули MagnumPlus, рис. 5.6:

Интерфейсные модули (IN/OUT). Чтобы удовлетворить тем или иным специфическим требованиям, имеется большое разнообразие модулей, среди которых - модули Ethernet Switch (разъем AUI, BNC, F/0), Token Ring 4 или 16 Мбит/с (разъем DB9), Е1 (G.703);

Модули питания. Питание может осуществляться от 48V DC, 110V AC, 220V AC. Для обеспечения защиты на случай выхода из строя блока питания допускается установка до двух блоков питания с распределяемой нагрузкой;

Модуль контрольной логики. Необязательный модуль, позволяющий осуществлять дистанционное SNMP управление и мониторинг;

Модули общей логики. Обеспечивают все необходимые возможности мультиплексирования и демультиплексирования на основе волоконнооптического интерфейса (155 Мбит/с) или интерфейса на коаксиальном кабеле

(DS3, 45 Мбит/с).

Рис. 5.6. Вид шасси мультиплексора MagnumPlus производства ADC Kentrox

На сегодняшний день приобретение дополнительной техники или специальных устройств является достаточно дорогим удовольствием. Для того, чтобы сохранить свои финансовые затраты, довольно часто используют такие устройства, как мультиплексор и демультиплексор, которые являются своеобразными селекторами данных.

В случае с мультиплексором есть возможность через один выход пропустить информацию с нескольких входов. А демультиплексор действует с точностью наоборот – распределяет полученные данные с одного входа на разные выходы.

Мультиплексор представляет собой такое оборудование, которое содержит в себе несколько входов сигнала, один или несколько входов управления и лишь один общий выход. Данное устройство дает возможность передавать определенный канал из одного из имеющихся входов на специальный и единственный выход.

При всем этом выбирается вход с помощью подачи определенной комбинации сигналов управления. Чаще всего мультиплексор необходим там, где нужно обустраивать для передачи сигналов большое количество каналов (сигналов), а денег и технического оснащения для этого нет.

Работоспособность данного типа устройства основана на том, что сигнал связи, даже в случае, если он один, очень часто не применяется на всю мощность. По этой причине имеется лишнее место для запуска других потоков информации по одной линии.

Разумеется, что если все эти потоки пускаются в изначальном виде и в одно и то же время, то на выходе получится обычная мешанина информационных данных, которую будет практически нереально расшифровать. Из-за этого мультиплексор производится при помощи разделения потоков информации разнообразными методами.

Разделение по частотным полосам – это когда все потоки данных идет в одно и то же время, но с разной частотой. При этом не происходит смешивание потоков. Кроме этого, есть возможность пустить потоки в различных временных линиях. Также особо популярным является способ кодирования. В этом случае все потоки обозначаются специальными знаками, кодируются и одновременно отправляются.

Мультиплексоры классифицируют по нескольким критериям: по месту использования или по своим целевым задачам и так далее.


Линия связи мультиплексора и демультиплексора

Основным различием мультиплексоров считается то, каким образом происходит уплотнение сигналов в один сплошной поток.

Мультиплексирование бывает таких видов:

  • временного характера;
  • пространственного типа;
  • кодовым;

Как правило, если каналы являются проводными, то в применении актуальны первые два метода, а для беспроводных каналов применяются все четыре варианта. Обычно, если речь идет о мультиплексоре, то подразумевается проводное устройство.

По этой причине стоит более подробно ознакомиться с частотным и временным методами:

Методы мультиплексирования


Чтобы исполнить частотное мультиплексирование необходимо для всех потоков определить определенный частотный период. Перед самим процессом нужно переместить спектра всех каналов, что входят в период иной частоты, что не будет никак пересекаться с иными сигналами. Кроме того, для обеспечения надежности, меж частотами делают определенные интервалы для дополнительной защиты. Данный метод применяют и в электрических, и в оптических связных линиях.

Временной вариант


Временное мультиплексирование и демультиплексирование

Чтобы передать каждый сигнал в сплошном потоке, что входит, имеется определенное количество времени. В этом случае, перед устройством стоит особая задача – гарантировать доступ циклов к общей среде перенаправления для потоков, которые входят на маленький временной промежуток.

При этом необходимо сделать так, чтобы не возникло нежелательное накладывание каналов друг на друга, которое смешивает информацию. Для этого используют специальные интервалы для защиты, которые ставят меж этими самыми каналами.

Этот способ используют, как правило, для цифровых связных каналов.

Классификация мультиплексоров

Мультиплексоры существуют таких видов:

  1. Терминальные. Их размещают на концах связных линий.
  2. Ввода и вывода. Такие устройства встраивают в разрыв связных линий, чтобы из сплошного потока выводить определенные сигналы. При их помощи можно обойтись без дорогостоящих мультиплексоров терминального типа.

Также мультиплексоры классифицируются таким способом:

Аналоговые мультиплексоры


Ключи аналогового типа являются специальными аналого-дискретными элементами. Аналоговый ключ может быть представлен в качестве отдельно взятого устройства. Набор такого рода ключей, которые работают на единственный выход с цепями выборки определенного ключа, являются специальным аналоговым мультиплексором. Аналоговое оборудование в каждый период времени выбирает определенный входной канал и направляет его на специальное устройство

Цифровые мультиплексоры


Цифровые оборудования делятся на мультиплексоры второго, первого и иных высоких уровней. Цифровые мультиплексоры дают возможность принимать сигналы цифрового типа из устройств низкого уровня. При этом можно их записать, образовать цифровое течение высокого уровня. Таким образом, входящие потоки синхронизируются. Также можно отметить, что они обладают одинаковыми скоростями.

Области применения

Видеомультиплексоры применяют в телевизионной технике и различных дисплеях, в системах охранного видеонаблюдения. На мультиплексировании базируется GSM-связь и разнообразные входные модемы провайдеров в интернете. Также данные устройства применяют в GPS-приемниках, в волоконно-оптических связных линиях широкополосного типа.

Мультиплексоры используют в различных делителях частоты, специальных триггерных элементах, особых сдвигающихся устройствах и так далее. Их могут применять для того, чтобы преобразовать определенный параллельный двоичный код в последовательный.


Схема применения оптического мультиплексора

Структура мультиплексора

Мультиплексор состоит из специального дешифратора адреса входной линии каналов, разнообразных схем, в том числе и схемы объединения.

Структуру мультиплексора можно рассмотреть на примере его общей схемы. Входные данные логического типа поступают на выходы коммутатора, и далее через него направляются на выход. На вход управления подается слова адресных каналов. Само устройство тоже может обладать специальным входом управления, который дает возможность проходить или не проходить входному каналу на выход.

Существуют типы мультиплексоров, которые обладают выходом с тремя состояниями. Все нюансы работы мультиплексора зависят от его модели.

Демультиплексор

Демультиплексор представляет собой логическое устройство, которое предназначено для того, чтобы свободно переключать сигнал с одного входа информации на один из имеющихся информационных выходов. На деле демультиплексор является противоположностью мультиплексору.

Во время передачи данных по общему сигналу с разделением по временному ходу необходимо как использование мультиплексоров, так и применение демультиплексоров, то есть прибор обратного функционального назначения. Это устройство распределяет информационные данные из одного сигнала между несколькими приемниками данных.

Особым отличием данного типа устройства от мультиплексоров считается то, что есть возможность обледенить определенное количество входов в один, не применяя при этом дополнительных схем. Но для того, чтобы увеличить нагрузку микросхемы, на выходе устройства для увеличения входного канала рекомендуется установить специальный инвертор.

В схеме самого простого такого устройства для определенного выхода применяется двоичный дешифратор. Стоит отметить, что при подробном изучении дешифратора, можно сделать демультиплексор гораздо проще. Для этого необходимо ко всем логическим элементам, которые входят в структуру дешифратора прибавить еще вход. Данную структуру достаточно часто называют дешифратором, который имеет вход разрешения работы.

На что следует обратить внимание при выборе мультиплексора?

  1. Какие камеры используются – черно-белые, цветные?
  2. Общее количество камер, которое возможно подключить к устройству.
  3. Тип мультиплексора.
  4. Разрешение устройства.
  5. Наличие детектора, определяющего движение.
  6. Можно ли подключить второй экран монитора?

При выборе мультиплексора или демультиплексора необходимо учитывать все нюансы и технические характеристики устройства.

В связи с тем, что вычислительные сети используются для передачи данных на большие расстояния, то стремятся минимизировать количество проводов в кабеле, в целях экономии. Поэтому разрабатывались технологии, которые позволяют передавать, по одному и тому же каналу связи, сразу несколько потоков данных.

(англ. multiplexing, muxing)- это процесс уплотнение канала связи, другими словами, передача нескольких потоков (каналов) данных с меньшей скоростью (пропускной способностью) по одному каналу связи, с использованием специального устройства, называемого мультиплексором.

Мультиплексор (MUX) - комбинационное устройство, обеспечивающее передачу в желаемом порядке цифровой информации, поступающей по нескольким входам на один выход. Может быть реализован как аппаратно так и программно.

Демультиплексор (DMX) выполняет обратную функцию мультиплексора.

В настоящее время, для уплотнения канала связи, в основном используют:

  • Временное мультиплексирование (Time Division Multiplexing, TDM)
  • Частотное мультиплексирование (Frequency Division Multiplexing, FDM)
  • Волновое мультиплексирование (Wave Division Multiplexing, WDM)
  • Множественный доступ с кодовым разделением (CodeDivisionMultipleAccess, CDMA) - каждый канал имеет свой код наложение которого на групповой сигнал позволяет выделить информацию конкретного канала.

Временное мультиплексирование

Первой стали применять технологию TDM, которая широко используется в обычных системах электросвязи. Эта технология предусматривает объединение нескольких входных низкоскоростных каналов в один составной высокоскоростной канал.

Мультиплексор принимает информацию по N входным каналам от конечных абонентов, каждый из которых передает данные по абонентскому каналу со скоростью 64 Кбит/с -1 байт каждые 125 мкс.

В каждом цикле мультиплексор выполняет следующие действия:

  • прием от каждого канала очередного байта данных;
  • составление из принятых байтов уплотненного кадра, называемого также обоймой;
  • передача уплотненного кадра на выходной канал с битовой скоростью, равной N*64 Кбит/с.

Порядок байт в обойме соответствует номеру входного канала, от которого этот байт получен. Количество обслуживаемых мультиплексором абонентских каналов зависит от его быстродействия. Например, мультиплексор Т1, представляющий собой первый промышленный мультиплексор, работавший по технологии TDM, поддерживает 24 входных абонентских канала, создавая на выходе обоймы стандарта Т1, передаваемые с битовой скоростью 1,544 Мбит/с.

Демультиплексор выполняет обратную задачу - он разбирает байты уплотненного кадра и распределяет их по своим нескольким выходным каналам, при этом он считает, что порядковый номер байта в обойме соответствует номеру выходного канала.

В рамках TDM различают:

  • синхронное мультиплексирование (каждому приложению соответствует тайм-слот (возможно несколько тайм-слотов) с определенным порядковым номером в периодической последовательности слотов;
  • асинхронное или статистическое мультиплексирование, когда приписывание тайм-слотов приложениям происходит более свободным образом, например, по требованию.

Частотное мультиплексирование

Техника частотного мультиплексирования разрабатывалась для телефонных сетей. Основная идея состоит в выделении каждому соединению собственного диапазона частот в общей полосе пропускания линии связи. Мультиплексирование выполняется с помощь смесителя частот, а демультиплексирование – с помощью узкополосного фильтра, ширина которого равна ширине диапазона канала.

Волновое или спектральное мультиплексирование

В методе волнового мультиплексирования используется тот же принцип частотного разделения канала, но только в другой области электромагнитного спектра. Информационным сигналом является не электрический ток, а свет. Для организации WDM-каналов в волоконно-оптическом кабеле задействуют волны инфракрасного диапазона длиной от 850 до 1565 нм, что соответствует частотам от 196 до 350 ТГц.

Для повышения пропускной способности, вместо увеличения скорости передачи в едином составном канале, как это реализовано в технологии TDM, в технологии WDM увеличивают число каналов (длин волн) - лямбд.

Сети WDM работают по принципу коммутации каналов, при этом каждая световая волна представляет собой отдельный спектральный канал и несет собственную информацию.

Современные WDM системы на основе стандартного частотного плана (ITU-T Rec. G.692) можно подразделить на три группы:

  • грубые WDM (Coarse WDM- CWDM)-системы с частотным разносом каналов не менее 200 ГГц, позволяющие мультиплексировать не более 18 каналов. (Используемые в настоящее время CWDM работают в полосе от 1270нм до 1610нм, промежуток между каналами 20нм(200ГГц), можно мультиплексировать 16 спектральных каналов.);
  • плотные WDM (Dense WDM-DWDM)-системы с разносом каналов не менее 100 ГГц, позволяющие мультиплексировать не более 40 каналов;
  • высокоплотные WDM (High Dense WDM-HDWDM)-системы с разносом каналов 50 ГГц и менее, позволяющие мультиплексировать не менее 64 каналов.
транзитных узлов ) локальных операций коммутации. Отправитель должен выставить данные на тот свой порт, из которого выходит найденный маршрут, а все транзитные узлы должны соответствующим образом выполнить "переброску" данных с одного своего порта на другой, другими словами - выполнить коммутацию.

Устройство, предназначенное для выполнения коммутации, называется коммутатором (switch). Коммутатор производит коммутацию входящих в его порты информационных потоков , направляя их в соответствующие выходные порты (рис. 5.2).


Рис. 5.2.

Однако, прежде чем выполнить коммутацию, коммутатор должен распознать поток . Для этого поступившие данные проверяются на предмет наличия признаков какого-либо из потоков , заданных в таблице коммутации . Если произошло совпадение, то эти данные направляются на тот интерфейс , который был определен для них в маршруте.

Термины коммутация, таблица коммутации и коммутатор в телекоммуникационных сетях могут трактоваться неоднозначно. Мы уже определили термин коммутация как процесс соединения абонентов сети через транзитные узлы . Этим же термином мы обозначаем и соединение интерфейсов в пределах отдельного транзитного узла . Коммутатором в широком смысле слова называется устройство любого типа, способное выполнять операции переключения потока данных с одного интерфейса на другой. Операция коммутации может быть выполнена в соответствии с различными правилами и алгоритмами. Некоторые способы коммутации и соответствующие им таблицы и устройства получили специальные названия (например, маршрутизация , таблица маршрутизации , маршрутизатор ). В то же время за другими специальными типами коммутации и соответствующими устройствами закрепились те же самые названия – коммутация, таблица коммутации и коммутатор – которые здесь используются в узком смысле, например коммутация и коммутатор локальной сети. В телефонных сетях , которые появились намного раньше компьютерных, также используется аналогичная терминология, коммутатор является здесь синонимом телефонной станции. Из-за солидного возраста и гораздо большей (пока) распространенности телефонных сетей, чаще всего в телекоммуникациях под термином "коммутатор" понимают именно телефонный коммутатор.

Коммутатором может быть как специализированное устройство, так и универсальный компьютер со встроенным программным механизмом коммутации, в этом случае коммутатор называется программным . Компьютер может совмещать функции коммутации данных, направляемых на другие узлы, с выполнением своих обычных функций конечного узла. Однако во многих случаях более рациональным является решение, в соответствии с которым некоторые узлы в сети выделяются специально для выполнения коммутации. Эти узлы образуют коммутационную сеть , к которой подключаются все остальные. На рис. 5.3 показана коммутационная сеть , образованная из узлов 1, 5, 6 и 8, к которой подключаются конечные узлы 2, 3, 4, 7, 9 и 10.


Рис. 5.3.

Мультиплексирование и демультиплексирование

Как уже было сказано, прежде чем выполнить переброску данных на определенные для них интерфейсы, коммутатор должен понять, к какому потоку они относятся. Эта задача должна решаться независимо от того, поступает ли на вход коммутатора только один поток в "чистом" виде, или "смешанный" поток , который объединяет в себе несколько потоков . В последнем случае к задаче распознавания добавляется задача демультиплексирования .

Задача демультиплексирования ( demultiplexing ) - разделение суммарного агрегированного потока , поступающего на один интерфейс, на несколько составляющих потоков .

Как правило, операцию коммутации сопровождает также обратная операция - мультиплексирование .

Задача мультиплексирования ( multiplexing ) - образование из нескольких отдельных потоков общего агрегированного потока , который можно передавать по одному физическому каналу связи.

Операции мультиплексирования /демультиплексирования имеют такое же важное значение в любой сети, как и операции коммутации, потому что без них пришлось бы все коммутаторы связывать большим количеством параллельных каналов, что свело бы на нет все преимущества неполносвязной сети.

На рис. 5.4 показан фрагмент сети, состоящий из трех коммутаторов. Коммутатор 1 имеет пять сетевых интерфейсов . Рассмотрим, что происходит на интерфейсе 1. Сюда поступают данные с трех интерфейсов - int 3, int.4 и int.5. Все их надо передать в общий физический канал , то есть выполнить операцию мультиплексирования . Мультиплексирование представляет собой способ обеспечения доступности имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети.


Рис. 5.4.

Существует множество способов мультиплексирования потоков в одном физическом канале, и важнейшим из них является разделение времени. При этом способе каждый поток время от времени (с фиксированным или случайным периодом) получает в свое распоряжение