Изготовление микропроцессоров. Курсовая работа: Этапы производства микропроцессоров. Почему микрочипы квадратные

Недавно в московском Политехническом музее стенд вычислительной техники серьезно обновился - компания Intel разместила там свой стенд, который получил название "От песка до процессора ". Отныне этот стенд станет неотъемлемой частью школьных экскурсий, но даже взрослым я советую не откладывать посещение заведения на срок более пяти лет – к 2016 году компания Intel планирует серьёзно «проапгрейдить» музей, чтобы он смог войти в десятку лучших музеев науки в мире!

К этому событию был приурочен одноименный цикл лекций из трех частей. Две лекции уже прошло - их содержание вы сможете найти под катом. Ну а если вас все это заинтересует, то еще успеете посетить третюю лекцию, информация о которой находится в конце поста.

Мне не стыдно признаться – большая часть данного текста действительно является конспектом первой лекции, которую провел Николай Суетин , директор по внешним проектам в сфере исследований и разработок Intel в России. По большей части, речь шла про современные полупроводниковые технологии и проблемы, которые перед ними стоят.

Предлагаю приступить к чтению интересного, и начнем мы с самых основ.

Процессор

Технически современный микропроцессор выполнен в виде одной сверхбольшой интегральной схемы, состоящей из нескольких миллиардов элементов - это одна из самых сложных конструкций, созданных человеком. Ключевыми элементами любого микропроцессора являются дискретные переключатели – транзисторы. Блокируя и пропуская электрический ток (включение-выключение), они дают возможность логическим схемам компьютера работать в двух состояниях, то есть в двоичной системе. Размеры транзисторов измеряются в нанометрах. Один нанометр (нм) – это одна миллиардная (10−9) часть метра.
Основную часть работы при создании процессоров делают вовсе не люди, а роботизированные механизмы – именно они туда-сюда таскают кремниевые пластины. Цикл производства каждой пластины может доходить до 2-3 месяцев.

Более подробно (и наглядно) про технологию производства процессоров я еще расскажу, ну а пока совсем вкратце.

Пластины действительно делаются из песка – по распространённости в земной коре кремний занимает второе место после кислорода. Путем химических реакций оксид кремния (SiO 2) тщательно очищают, делая из «грязного» чистый. Для микроэлектроники нужен монокристалличский кремний – его получают из расплава. Все начинается с небольшого кристалла (который и опускают в расплав) – позже он превращается в специальный монокристаллический «буль» ростом с человека. Далее убираются основные дефекты и специальными нитями (с алмазным порошком) буль нарезается на диски – каждый диск тщательно обрабатывается до абсолютно ровной и гладкой (на атомарном уровне) поверхности. Толщина каждой пластины около 1мм – исключительно для того, чтобы она не ломалась и не прогибалась, то есть, чтобы с ней было можно комфортно работать.

Диаметр каждой пластины составляет ровно 300мм – чуть позже на этой площади «вырастут» сотни, а то и тысячи процессоров. К слову, компании Intel, Samsung, Toshiba и TSMC уже сообщили о том, что занимаются разработкой оборудования, способного работать с 450мм-пластинами (на большей площади поместится больше процессоров, а значит и цена каждого будет ниже) – переход на них планируется уже к 2012 году.

Вот изображение поперечного сечения процессора:

Сверху находится защитная металлическая крышка, которая помимо защитной функции, так же выполняет роль теплораспределителя – именно ее мы обильно мажем термопастой, когда устанавливаем кулер. Под теплораспределителем находится тот самый кусочек кремния, который выполняет все пользовательские задачи. Еще ниже – специальная подложка, которая нужна для разводки контактов (и увеличения площади «ножек»), чтобы процессор можно было установить в сокет материнской платы.

Сам чип состоит из кремния, на котором находится до 9 слоев металлизации (из меди) – именно столько уровней нужно, чтобы по определенному закону можно было соединить транзисторы, находящиеся на поверхности кремния (так как сделать все это на одном уровне просто невозможно). По сути, эти слои выполняют роль соединительных проводов, только в гораздо меньшем масштабе; чтобы «провода» не закорачивали друг друга, их разделяют слоем оксида (с низкой диэлектрической проницаемостью).

Как я уже писал выше, элементарной ячейкой процессора является полевой транзистор. Первые полупроводниковые изделия были из германия и первые транзисторы изготавливались из него же. Но как только начали делать полевые транзисторы (под затвором которого находится специальный изолирующий слой - тонкая диэлектрическая пленка, управляющая «включением» и «выключением» транзистора), германий тут же «вымер», уступив дорогу кремнию. Последние 40 лет в качестве основного материала для диэлектрика затвора использовался диоксид кремния (SiO 2), что было обусловлено его технологичностью и возможностью систематического улучшения характеристик транзисторов по мере уменьшения их размеров.

Правило масштабирования простое – уменьшая размеры транзистора, толщина диэлектрика должна уменьшаться пропорционально. Так, например, в чипах с техпроцессом в 65нм толщина слоя диэлектрика затвора из SiO 2 составляла порядка 1.2 нм, что эквивалентно пяти атомарным слоям. Фактически, это физический предел для данного материала, поскольку в результате дальнейшего уменьшения самого транзистора (а значит и уменьшения слоя диоксида кремния), ток утечки через диэлектрик затвора значительно возрастает, что приводит к существенным потерям тока и избыточному тепловыделению. В таком случае слой из диоксида кремния перестает быть препятствием для квантового туннелирования электронов, из-за чего пропадает возможность гарантированного управления состоянием транзистора. Соответственно, даже при идеальном изготовлении всех транзисторов (количество которых в современном процессоре достигает нескольких миллиардов), неправильная работа хотя бы одного из них означает неправильную работу всей логики процессора, что запросто может привести к катастрофе – это если учесть, что микропроцессоры осуществляют управление работой практически всех цифровых устройств (от современных сотовых телефонов до топливных систем автомобилей).

Процесс миниатюризации транзисторов не пошел вопреки законам физики, но и компьютерный прогресс, как мы видим, не остановился. Это значит, что проблему с диэлектриком каким-то образом решили. И ведь действительно решили – при переходе на 45нм компания Intel стала использовать новый материал, так называемый high-k диэлектрик, который заменил бесперспективно тонкий слой диоксида кремния. Слой на базе окиси редкоземельного металла гафния с высоким (20 против 4 у SiO 2) показателем диэлектрической проницаемости k (high-k) стал более толстым, но это позволило сократить ток утечки более чем в десять раз, сохранив при этом возможность корректно и стабильно управлять работой транзистора. Новый диэлектрик оказался плохо совместим с затвором из поликремния, но и это не стало препятствием - для повышения быстродействия затвор в новых транзисторах был выполнен из металла.

Таким образом, компания Intel стала первой в мире компанией, перешедшей к массовому производству микропроцессоров с использованием гафния. Более того, пальма первенства до сих пор принадлежит корпорации - до сих никто не может воспроизвести эту технологию, т.к. пленка из диэлектрика создается методом атомарного напыления, причем материал наносится последовательными слоями толщиной всего в один атом.
Интересно, после прочтения этих абзацев у вас возникла мысль о том, как миллиарды транзисторов проектируют, делают и умещают на такой маленькой площади? И как это в итоге все работает и, при этом, стоит вполне разумных денег? Я очень сильно призадумался, хотя раньше считал все это очевидным и у меня даже хватало совести думать «Эй, а чего так дорого? За один-то процессор только! »:)

В 1965 году один из основателей корпорации Intel, Гордон Мур, зафиксировал эмпирическое наблюдение, ставшее впоследствии знаменитым законом его имени. Представив в виде графика рост производительности микросхем памяти, он обнаружил любопытную закономерность: новые модели микросхем разрабатывались спустя равные промежутки времени - примерно 18-24 месяца - после появления их предшественников, а емкость микросхем при этом возрастала каждый раз примерно вдвое.

Позже Гордон Мур предсказал закономерность, предположив, что количество транзисторов в микропроцессорах будет удваиваться каждые два года – собственно, постоянно создавая инновационные технологии, корпорация Intel обеспечивает выполнение закона Мура вот уже более 40 лет.

Количество транзисторов продолжает расти, хотя размеры процессора «на выходе» остаются относительно неизменными. Секрета, опять же, никакого нет – это становится понятным, если взглянуть на следующую зависимость.

Как видите, раз в два года топологические размеры уменьшаются в 0.7 раз. Как результат уменьшения размеров транзисторов – выше скорость их переключения, ниже цена и меньше потребляемая мощность.

На данный момент компания Intel выпускает процессоры по технологии 32нм. Ключевые технические отличия от технологии 45нм:
- используется 9 уровней металлизации
- применяется high-k диэлектрик нового поколения (тоже оксид гафния, но со специальными добавками – полученный слой эквивалентен 0.9нм оксида кремния)

Создание нового технологического процесса для создания металлического затвора привело к 22% увеличению производительности всех транзисторов (по сравнению с 45нм), а так же к самой большой плотности элементов, что потребовало самой большой плотности тока.

Производство

Компания Intel производит процессоры в трех странах – это США, Израиль и Ирландия. На данный момент у компании существует 4 фабрики для массового производства процессоров по технологии 32нм. Это: D1D и D1C в штате Орегон, Fab 32 в штате Аризона и Fab 11X в Нью-Мексико. И в устройстве этих заводов и в их работе есть немало интересных вещей, но об этом я расскажу в следующий раз.

Стоимость такого завода составляет порядка $5млрд, а если делать сразу несколько заводов, то сумму инвестиций можно смело умножить. Если учесть, что смена технологий происходит раз в два года, то получается, что у завода есть ровно 4 года на то, чтобы «отбить» вложенные в него $5млрд и принести прибыль. Из чего напрашивается очевидный вывод - экономика очень даже диктует развитие технического прогресса… но, несмотря на все эти огромные цифры, стоимость производства одного транзистора продолжает падать - сейчас она составляет менее одной миллиардной доллара.

Не надо думать, что с переходом нескольких фабрик на 32нм, все вдруг станет производиться по этому техпроцессу – тем же чипсетам и другим периферийным схемам это просто не нужно – в большинстве случаев в них используется 45нм. Рубеж в 22нм планируется полноценно взять уже в следующем году, а к 2013 с большой вероятностью будет и 16нм. По крайней мере, в этом году уже была сделана тестовая пластина (на 22нм), на которой была продемонстрирована работоспособность всех элементов, необходимых для работы процессора.

* UPD от * Необходимость уменьшения толщины подзатворного диэлектрика диктуется простой формулой плоского конденсатора:

Площадь затвора транзистора уменьшается, а для работоспособности транзистора емкость подзатворного диэлектрика нужно сохранять.
Поэтому приходилось уменьшать его толщину, а когда это стало невозможно нашли материал с большей величиной диэлектрической проницаемости.

Когда закончится эра кремния? Точная дата пока неизвестна, но она определенно не за горами. В технологии 22нм он еще определенно «повоюет», скорее всего и в 16нм останется… а вот дальше начнется самое интересное. Периодическая таблица, в принципе, достаточно большая и выбрать есть из чего) Но скорее всего, всё упрется не только в химию. Увеличения эффективности работы процессора можно будет добиться либо уменьшение топологические размеры (сейчас так и делают), либо используя другие соединения, обладающие более высокой подвижностью носителей – возможно, арсенид галлия, возможно «нашумевший» и перспективный графен (кстати, у него подвижность в сотни раз выше, чем у кремния). Но и тут есть проблемы. Сейчас технологии рассчитаны на обработку пластин с диаметром в 300мм – нужного для такой пластины количества арсенида галлия просто нет в природе, а графен (ворд настойчиво предлагает писать «графин») такого размера изготовить еще крайне сложно – делать это научились, но много дефектов, проблемы воспроизведения, легирования и т.д.

Скорее всего, следующим шагом станет нанесение монокристаллического арсенида галлия на кремний, а вот потом уже графен. А, возможно, развитие микроэлектроники пойдет не только по пути улучшения технологий, но и по пути развития принципиально новой логики – такое ведь тоже исключать нельзя. Сделаем ставки, господа? ;)

В общем, сейчас идет борьба за технологии и высокие подвижности. Но понятно одно – причин для остановки прогресса нет.

Тик-так

Процесс изготовления процессоров состоит из двух больших «частей». Для первой нужно иметь саму технологию изготовления, а для второй нужно понимание того, ЧТО изготавливать и как - архитектуру (то как соединены транзисторы). Если одновременно сделать и новую архитектуру и новую технологию, то в случае неудачи будет сложно найти «виновных» - одни будут говорить, что виноваты «архитекторы», другие – что технологи. В общем, следовать такой стратегии очень недальновидно.

В компании Intel введение новой технологии и архитектуры разнесено по времени – в один год вводится технология (и уже отработанная архитектура производится по новой технологии – если что-то пойдет «не так», то виноваты будут технологи); а когда новая технология будет отработана – архитекторы сделают под нее новую архитектуру и если на отработанной технологии что-то не заработает, то виноваты будут уже архитекторы. Такую стратегию назвали «Тик-так».
Более наглядно:

С существующими темпами развития технологий, требуются фантастических размеров вложения в исследования и разработку - ежегодно Intel вкладывает в это дело $4-5млрд. Часть работы происходит внутри компании, но очень многое – за ее пределами. Просто держать в компании целую лабораторию на подобии Bell Labs (кузница нобелевских лауреатов) в наше время практически невозможно.
Как правило, первые идеи закладываются в университетах – для того, чтобы университеты знали над чем именно имеет смысл работать (какие технологии востребованы и что будет актуально), все «полупроводниковые компании» были объединены в консорциум. После этого они предоставляют своего рода roadmap – в нем говорится о всех проблемах, которые будут стоять перед полупроводниковой промышленностью в ближайшие 3-5-7 лет. По идее, любая компания вправе буквально зайти в университет и «воспользоваться» той или иной инновационной разработкой, но права на них, как правило, остаются у университета-разработчика – такой подход называется «открытыми инновациями». Компания Intel не стала исключением и периодически прислушивается к идеям студентов – после защиты, отбора на инженерном уровне и тестирования в реальных условиях, у идеи есть все шансы стать новой технологией.

Вот список исследовательских центров по всему миру, с которыми работает Intel (кроме университетов):

Увеличение производительности приводит к удорожанию фабрик, а это в свою очередь ведёт к естественному отбору. Так, например, чтобы окупить себя за 4 года, каждая фабрика Intel должна выпускать минимум 100 работающих пластин в час. На каждой пластине тысячи чипов… и если произвести определенные расчеты, то станет понятно - не будь у Intel 80% мирового рынка процессоров, компания просто не смогла бы окупать расходы. Вывод – иметь у себя и собственный «дизайн» и собственное производство в наше время достаточно накладно – как минимум нужно иметь огромный рынок. Результат естественного отбора можно видеть ниже – как видно, со своим «дизайном» и производством в ногу с техническим прогрессом шагает все меньше и меньше компаний. Всем остальным пришлось перейти в режим fabless – так, например, ни у Apple, ни у NVIDIA, ни даже у AMD нет собственных фабрик и им приходится пользоваться услугами других компаний.

Помимо Intel, к технологии 22нм во всем мире потенциально готовы только две компании - Samsung и TSMC, вложившие в прошлом году в свои фабрики более $1млрд. Причем у TSMC нет своего подразделения дизайна (только лишь foundry) – по сути, это просто высокотехнологичная кузница, которая принимает заказы от других компаний и часто даже не знает того, что куёт.

Как можно заметить, естественный отбор прошел достаточно быстро – всего за 3 года. Отсюда можно сделать два вывода. Первый – что без своей фабрики лидером индустрии стать вряд ли получится; второй – по сути, преуспевать можно и без своего завода. По большому счету хватит хорошего компьютера, мозгов и умения «рисовать» - порог вхождения на рынок сильно снизился и именно по этой причине появилось очень много «стартапов». Некто придумывает некую схему, для которой есть или искусственно создается некий рынок - начинающие производители поднимаются… PROFIT! Но вот порог на рынок foundry сильно поднялся и дальше будет только расти…

Что еще поменялось за последние годы? Если повспоминать, то года так до 2004 утверждение «чем больше частота процессора, тем лучше» было вполне справедливым. Начиная с 2004-2005 частота процессоров почти перестала расти, что связано с выходом на своего рода физические ограничения. Сейчас наращивать производительность можно за счет многоядерности - выполняя задачи параллельно. Но сделать много ядер на одном чипе не является большой проблемой – гораздо сложнее заставить их правильно работать в нагрузке. Как следствие – с этого момента роль софта кардинально возросла и значимость профессии «программист» в ближайшее время будет только набирать обороты.

В общем, подводя итог вышесказанному :
- Закон Мура продолжает действовать
- Рост стоимости разработки новых технологий и материалов, а также затраты на содержание фабрик растут
- Производительность также растет. Ожидается скачок при переходе на 450мм пластины

Как результат :
- Разделение компаний на «fabless» и «foundry»
- Outsource основных R&D
- Дифференциация за счет развития софта

The end

Вам было интересно читать? Надеюсь. Как минимум, мне было интересно все это написать и еще интересней было это слушать… хотя тоже сперва подумал, «да что на этой лекции расскажут».

На прошлой неделе в московском Политехническом музее состоялась вторая лекция, которую

Производство процессоров

Основным химическим элементом, используемым при производстве процессоров, является кремний, самый распространенный элемент на земле после кислорода. Это базовый компонент, из которого состоит прибрежный песок (кремниевый диоксид); однако в таком виде он не подходит для производства микросхем. Чтобы использовать кремний в качестве материала для изготовления ми

кросхемы, необходим длительный технологический процесс, который начинается с получения кристаллов чистого кремния по методу Жокральски (Czochralski). По этой технологии сырье, в качестве которого используется в основном кварцевая порода, преобразуется в электродуговых печах в металлургический кремний. Затем для удаления примесей полученный кремний плавится, дистиллируется и кристаллизуется в виде полупроводниковых слитков с очень высокой степенью чистоты (99,999999%). После механической нарезки слитков полученные заготовки загружаются в кварцевые тигли и помещаются в электрические сушильные печи для вытяжки кристаллов, где плавятся при температуре более 2500° по Фаренгейту. Для того чтобы предотвратить образование примесей, сушильные печи обычно устанавливаются на толстом бетонном основании. Бетонное основание, в свою очередь, устанавливается на амортизаторах, что позволяет значительно уменьшить вибрацию, которая может негативно сказаться на формировании кристалла. Как только заготовка начинает плавиться, в расплавленный кремний помещается небольшой, медленно вращающийся затравочный кристалл. По мере удаления затравочного кристалла от поверхности расплава вслед за ним вытягиваются кремниевые нити, которые, затвердевая, образуют кристаллическую структуру. Изменяя скорость перемещения затравочного кристалла (10-40 мм в час) и температуру (примерно 2500° по Фаренгейту), получаем кристалл кремния малого начального диаметра, который затем наращивается до нужной величины. В зависимости от размеров изготавливаемых микросхем, выращенный кристалл достигает 8-12 дюймов (20-30 мм) в диаметре и 5 футов (около 1,5 м) в длину.

Вес выращенного кристалла достигает нескольких сотен фунтов. Заготовка вставляется в цилиндр диаметром 200 мм (текущий стандарт), часто с плоской вырезкой на одной стороне для точности позиционирования и обработки. Затем каждая заготовка разрезается алмазной пилой более чем на тысячу круговых подложек толщиной менее миллиметра (рис2). После этого подложка полируется до тех пор, пока ее поверхность не станет зеркально гладкой. В производстве микросхем используется процесс, называемый фотолитографией. Технология этого процесса такова: на полупроводник, служащий основой чипа, один за другим наносятся слои разных материалов; таким образом, создаются транзисторы, электронные схемы и проводники (дорожки), по которым распространяются сигналы. В точках пересечения специфических схем можно создать транзистор или переключатель (вентиль). Фотолитографический процесс начинается с покрытия подложки слоем полупроводника со специальными добавками, затем этот слой покрывается фоторезистивным химическим составом, а после этого изображение микросхемы проектируется на ставшую теперь светочувствительной поверхность. В результате добавления к кремнию (который, естественно, является диэлектриком) донорных примесей получается полупроводник. Проектор использует специальный фотошаблон (маску), который является, по сути, картой данного конкретного слоя микросхемы. (Микросхема процессора Pentium III содержит пять слоев; другие современные процессоры могут иметь шесть или больше слоев. При разработке нового процессора потребуется спроектировать фотошаблон для каждого слоя микросхемы.) Проходя через первый фотошаблон, свет фокусируется на поверхности подложки, оставляя отпечаток изображения этого слоя. Затем специальное устройство несколько перемещает подложку, а тот же фотошаблон (маска) используется для печати следующей микросхемы. После того как микросхемы будут отпечатаны на всей подложке, едкая щелочь смоет те области, где свет воздействовал на фоторезистивное вещество, оставляя отпечатки фотошаблона (маски) конкретного слоя микросхемы и межслойные соединения (соединения между слоями), а также пути прохождения сигналов. После этого на подложку наносится другой слой полупроводника и вновь немного фоторезистивного вещества поверх него, затем используется следующий фотошаблон (маска) для создания очередного слоя микросхемы. Таким способом слои наносятся один поверх другого до тех пор, пока не будет полностью изготовлена микросхема.

Финальная маска добавляет так называемый слой металлизации, используемый для соединения всех транзисторов и других компонентов. В большинстве микросхем для этого слоя используют алюминий, но в последнее время стали использовать медь. Например, при производстве процессоров компании AMD на фабрике в Дрездене используется медь. Это объясняется лучшей проводимостью меди по сравнению с алюминием. Однако для повсеместного использования меди необходимо решить проблему ее коррозии.

Когда обработка круговой подложки завершится, на ней будет фотоспособом отпечатано максимально возможное количество микросхем. Микросхема обычно имеет форму квадрата или прямоугольника, по краям подложки остаются некоторые "свободные" участки, хотя производители стараются использовать каждый квадратный миллиметр поверхности. Промышленность переживает очередной переходный период в производстве микросхем. В последнее время наблюдается тенденция к увеличению диаметра подложки и уменьшению общих размеров кристалла, что выражается в уменьшении габаритов отдельных схем и транзисторов и расстояния между ними. В конце 2001 и начале 2002 года произошел переход с 0,18- на 0,13-микронную технологию, вместо алюминиевых межкристальных соединений начали использовать медные, при этом диаметр подложки увеличился с 200 мм (8 дюймов) до 300 мм (12 дюймов). Увеличение диаметра подложки до 300 мм позволяет удвоить количество изготавливаемых микросхем. Использование 0,13-микронной технологии позволяет разместить на кристалле большее количество транзисторов при сохранении его приемлемых размеров и удовлетворительного процента выхода годных изделий. Это означает сохранение тенденции увеличения объемов кэш-памяти, встраиваемой в кристалл процессора. В качестве примера того, как это может повлиять на параметры определенной микросхемы, рассмотрим процессор Pentium 4.

Диаметр стандартной подложки, используемой в полупроводниковой промышленности в течение уже многих лет, равен 200 мм или приблизительно 8 дюймов(рис). Таким образом, площадь подложки достигает 31 416 мм2. Первая версия процессора Pentium 4, изготовленного на 200-миллиметровой подложке, содержала в себе ядро Willamette, созданное на основе 0,18-микронной технологии с алюминиевыми контактными соединениями, расположенными на кристалле площадью около 217 мм2. Процессор содержал в себе 42 млн. транзисторов. На 200-миллиметровой (8-дюймовой) подложке могло разместиться до 145 подобных микросхем. Процессоры Pentium 4 с ядром Northwood, созданные по 0,13-микронной технологии, содержат в себе медную монтажную схему, расположенную на кристалле площадью 131 мм2. Этот процессор содержит уже 55 млн. транзисторов. По сравнению с версией Willamette ядро Northwood имеет удвоенный объем встроенной кэш-памяти второго уровня (512 Кбайт), что объясняет более высокое количество содержащихся транзисторов. Использование 0,13-микронной технологии позволяет уменьшить размеры кристалла примерно на 60%, что дает возможность разместить на той же 200-миллиметровой (8-дюймовой) подложке до 240 микросхем. Как вы помните, на этой подложке могло разместиться только 145 кристаллов Willamette. В начале 2002 года Intel приступила к производству кристаллов Northwood на большей, 300-миллиметровой подложке площадью 70 686 мм2. Площадь этой подложки в 2,25 раза превышает площадь 200-миллиметровой подложки, что позволяет практически удвоить количество микросхем, размещаемых на ней. Если говорить о процессоре Pentium 4 Northwood, то на 300-миллиметровой подложке можно разместить до 540 микросхем. Использование современной 0,13-микронной технологии в сочетании с подложкой большего диаметра позволило более чем в 3,7 раза увеличить выпуск процессоров Pentium 4. Во многом благодаря этому современные микросхемы зачастую имеют более низкую стоимость, чем микросхемы предыдущих версий. В 2003 году полупроводниковая промышленность перешла на 0,09-микронную технологию. При вводе новой поточной линии не все микросхемы на подложке будут годными. Но по мере совершенствования технологии производства данной микросхемы возрастет и процент годных (работающих) микросхем, который называется выходом годных. В начале выпуска новой продукции выход годных может быть ниже 50%, однако ко времени, когда выпуск продукта данного типа прекращается, он составляет уже 90%. Большинство изготовителей микросхем скрывают реальные цифры выхода годных, поскольку знание фактического отношения годных к бракованным может быть на руку их конкурентам. Если какая-либо компания будет иметь конкретные данные о том, как быстро увеличивается выход годных у конкурентов, она может скорректировать цены на микросхемы или спланировать производство так, чтобы увеличить свою долю рынка в критический момент. Например, в течение 1997 и 1998 годов у AMD был низкий выход годных, и компания утратила значительную долю рынка. Несмотря на то что AMD предпринимала усилия для решения этой проблемы, ей все же пришлось подписать соглашение, в соответствии с которым IBM Microelectronics должна была произвести и поставить AMD некоторые ею же разработанные микропроцессоры. По завершении обработки подложки специальное устройство проверяет каждую микросхему на ней и отмечает некачественные, которые позже будут отбракованы. Затем микросхемы вырезаются из подложки с помощью высокопроизводительного лазера или алмазной пилы. Когда кристаллы будут вырезаны из подложек, каждая микросхема испытывается отдельно, упаковывается и снова проходит тест. Процесс упаковки называется соединением: после того как кристалл помещается в корпус, специальная машина соединяет тонюсенькими золотыми проводами выводы кристалла со штырьками (или контактами) на корпусе микросхемы. Затем микросхема упаковывается в специальный пакет - контейнер, который, по существу, предохраняет ее от неблагоприятных воздействий внешней среды. После того как выводы кристалла соединены со штырьками на корпусе микросхемы, а микросхема упакована, выполняется заключительное тестирование, чтобы определить правильность функционирования и номинальное быстродействие. Разные микросхемы одной и той же серии зачастую обладают различным быстродействием. Специальные тестирующие приборы заставляют каждую микросхему работать в различных условиях (при разных давлениях, температурах и тактовых частотах), определяя значения параметров, при которых прекращается корректное функционирование микросхемы. Параллельно определяется максимальное быстродействие; после этого микросхемы сортируются по быстродействию и распределяются по приемникам: микросхемы с близкими параметрами попадают в один и тот же приемник. Например, микросхемы Pentium 4 2,0А, 2,2, 2,26, 2,24 и 2,53 ГГц представляют собой одну и ту же микросхему, т. е. все они были напечатаны с одного и того же фотошаблона, кроме того, сделаны они из одной и той же заготовки, но в конце производственного цикла были отсортированы по быстродействию.

Как создаются чипы

Производство чипов заключается в наложении тонких слоёв со сложным "узором" на кремниевые подложки. Сначала создаётся изолирующий слой, который работает как электрический затвор. Что касается производства подложек, то из цельного монокристалла-цилиндра их необходимо нарезать тонкими "блинами", чтобы потом легко разрезать на отдельные кристаллы процессоров. Для тестов каждого кристалла на подложке используются электрические зонды. Наконец, подложка разрезается на отдельные ядра, нерабочие ядра сразу же отсеиваются. В зависимости от характеристик, ядро становится тем или иным процессором и заключается в упаковку, которая облегчает установку процессора на материнскую плату. Все функциональные блоки проходят через интенсивные стресс-тесты.

Всё начинается с подложек

Первый шаг в производстве процессоров выполняется в чистой комнате. Кстати, важно отметить, что подобное технологичное производство представляет собой скопление огромного капитала на квадратный метр. На постройку современного завода со всем оборудованием легко "улетают" 2-3 млрд. долларов, да и на тестовые прогоны новых технологий требуется несколько месяцев. Только затем завод может серийно выпускать процессоры.

В общем, процесс производства чипов состоит из нескольких шагов обработки подложек. Сюда входит и создание самих подложек, которые в итоге будут разрезаны на отдельные кристаллы Фигурнов, В.Э. IBM PC для пользователя.-М.,2004. - С.204.

Производство подложек

Первый этап - выращивания монокристалла. Для этого затравочный кристалл внедряется в ванну с расплавленным кремнием, который находится чуть выше точки плавления поликристаллического кремния. Важно, чтобы кристаллы росли медленно (примерно день), чтобы гарантировать правильное расположение атомов. Поликристаллический или аморфный кремний состоит из множества разномастных кристаллов, которые приведут к появлению нежелательных поверхностных структур с плохими электрическими свойствами.

Когда кремний будет расплавлен, его можно легировать с помощью других веществ, меняющих его электрические свойства. Весь процесс происходит в герметичном помещении со специальным воздушным составом, чтобы кремний не окислялся.

Монокристалл разрезается на "блины" с помощью кольцевой очень точной алмазной пилы, которая не создаёт крупных неровностей на поверхности подложек. Конечно, при этом поверхность подложек всё равно не идеально плоская, поэтому нужны дополнительные операции. Монокристаллы представлены на рисунке 1.

Рисунок 1. Внешний вид монокристалла.

Сначала с помощью вращающихся стальных пластин и абразивного материала (такого, как оксид алюминия), снимается толстый слой с подложек (процесс называется притиркой). В результате устраняются неровности размером от 0,05 мм до, примерно, 0,002 мм (2 000 нм). Затем следует закруглить края каждой подложки, поскольку при острых кромках могут отслаиваться слои. Далее используется процесс травления, когда с помощью разных химикатов (плавиковая кислота, уксусная кислота, азотная кислота) поверхность сглаживается ещё примерно на 50 мкм. Физически поверхность не ухудшается, поскольку весь процесс полностью химический. Он позволяет удалить оставшиеся погрешности в структуре кристалла, в результате чего поверхность будет близка к идеалу.

Последний шаг - полировка, которая сглаживает поверхность до неровностей, максимум, 3 нм. Полировка осуществляется с помощью смеси гидроксида натрия и гранулированного диоксида кремния.

Сегодня подложки для микропроцессоров имеют диаметр 200 или 300 мм, что позволяет производителям чипов получать с каждой из них множество процессоров. Следующим шагом будут 450-мм подложки, но раньше 2013 года ожидать их не следует. В целом, чем больше диаметр подложки, тем больше можно произвести чипов одинакового размера. 300-мм подложка, например, даёт более чем в два раза больше процессоров, чем 200-мм.

Легирование и диффузия

Легирование, которое выполняется во время роста монокристалла, уже упоминалось. Но легирование производится и с готовой подложкой, и во время процессов фотолитографии позднее. Это позволяет менять электрические свойства определённых областей и слоёв, а не всей структуры кристалла.

Добавление легирующего вещества может происходить через диффузию. Атомы легирующего вещества заполняют свободное пространство внутри кристаллической решётки, между структурами кремния. В некоторых случаях можно легировать и существующую структуру. Диффузия осуществляется с помощью газов (азот и аргон) или с помощью твёрдых веществ или других источников легирующего вещества Хасэгава, Х. - Мир компьютеров в вопросах и ответах.-М.,2004 - С.89..

Создание маски

Чтобы создать участки интегральной схемы, используется процесс фотолитографии. Поскольку при этом нужно облучать не всю поверхность подложки, то важно использовать так называемые маски, которые пропускают излучение высокой интенсивности только на определённые участки. Маски можно сравнить с чёрно-белым негативом. Интегральные схемы имеют множество слоёв (20 и больше), и для каждого из них требуется своя маска.

Структура из тонкой хромовой плёнки наносится на поверхность пластины из кварцевого стекла, чтобы создать шаблон. При этом дорогие инструменты, использующие поток электронов или лазер, прописывают необходимые данные интегральной схемы, в результате чего получается шаблон из хрома на поверхности кварцевой подложки. Важно понимать, что каждая модификация интегральной схемы приводит к необходимости производства новых масок, поэтому весь процесс внесения правок очень затратный.

Фотолитография

С помощью фотолитографии на кремниевой подложке формируется структура. Процесс повторяется несколько раз, пока не будет создано множество слоёв (более 20). Слои могут состоять из разных материалов, причём, нужно ещё и продумывать соединения микроскопическими проволочками. Все слои можно легировать Вуд, А. Микропроцессоры в вопросах и ответах.- М.,2005.-С.87.

Перед тем, как начнётся процесс фотолитографии, подложка очищается и нагревается, чтобы удалить липкие частицы и воду. Затем подложка с помощью специального устройства покрывается диоксидом кремния. Далее на подложку наносится связывающий агент, который гарантирует, что фоторезистивный материал, который будет нанесён на следующем шаге, останется на подложке. Фоторезистивный материал наносится на середину подложки, которая потом начинает вращаться с большой скоростью, чтобы слой равномерно распределился по всей поверхности подложки. Затем подложка вновь нагревается. Принцип действия фотолитографии представлен на рисунке 2.


Рисунок 2. Принцип действия фотолитографии

Затем через маску обложка облучается квантовым лазером, жёстким ультрафиолетовым излучением, рентгеновским излучением, пучками электронов или ионов - могут использоваться все эти источники света или энергии. Пучки электронов применяются, главным образом, для создания масок, рентгеновские лучи и пучки ионов - для исследовательских целей, а в промышленном производстве сегодня доминируют жёсткое УФ-излучение и газовые лазеры.

Жёсткое УФ-излучение с длиной волны 13,5 нм облучает фоторезистивный материал, проходя через маску. Для получения требуемого результата очень важны время проецирования и фокусировка. Плохая фокусировка приведёт к тому, что останутся лишние частицы фоторезистивного материала, поскольку некоторые отверстия в маске не будут облучены должным образом. То же самое получится, если время проецирования будет слишком маленьким. Тогда структура из фоторезистивного материала будет слишком широкой, участки под отверстиями будут недодержанными. С другой стороны, чрезмерное время проецирования создаёт слишком большие участки под отверстиями и слишком узкую структуру из фоторезистивного материала. Как правило, очень трудоёмко и сложно отрегулировать и оптимизировать процесс. Неудачная регулировка приведёт к серьёзным отклонениям и в соединительных проводниках Майоров, С.И. Информационный бизнес: коммерческое распространение и маркетинг.- М.,2007. -С.147..Специальная шаговая проекционная установка перемещает подложку в нужное положение. Затем может проецироваться строчка или один участок, чаще всего соответствующий одному кристаллу процессора. Дополнительные микроустановки могут вносить иные изменения. Они могут отлаживать существующую технологию и оптимизировать техпроцесс Кукин, В.Н. Информатика: организация и управление.-М.,2005.-С.78.. Микроустановки обычно работают над площадями меньше 1 кв. мм, в то время как обычные установки покрывают площади большего размера.

Существуют мокрый и сухой процессы травления, которыми обрабатываются участки диоксида кремния. Мокрые процессы используют химические соединения, а сухие процессы - газ. Отдельный процесс заключается и в удалении остатков фоторезистивного материала. Производители часто сочетают мокрое и сухое удаление, чтобы фоторезистивный материал был полностью удалён. Это важно, поскольку фоторезистивный материал органический, и если его не удалить, он может привести к появлению дефектов на подложке.

После травления и очистки можно приступать к осмотру подложки, что обычно и происходит на каждом важном этапе, или переводить подложку на новый цикл фотолитографии. Тест подложек представлен на рисунке 3.


Рисунок 3. Тест подложек

Готовые подложки тестируются на так называемых установках зондового контроля. Они работают со всей подложкой. На контакты каждого кристалла накладываются контакты зонда, что позволяет проводить электрические тесты. С помощью программного обеспечения тестируются все функции каждого ядра. Разрезание подложки представлено на рисунке 4.

Рисунок 4. Разрезание подложки

С помощью разрезания из подложки можно получить отдельные ядра. На данный момент установки зондового контроля уже выявили, какие кристаллы содержат ошибки, поэтому после разрезания их можно отделить от годных. Раньше повреждённые кристаллы физически маркировались, теперь в этом нет необходимости, вся информация хранится в единой базе данных Семененко, В. А., Ступин. Ю. В. Справочник по электронной вычислительной технике.- М.,2006. - С.45..

Затем функциональное ядро нужно связать с процессорной упаковкой, используя клейкий материал. После этого нужно провести проводные соединения, связывающие контакты или ножки упаковки и сам кристалл (рисунок 5). Могут использоваться золотые, алюминиевые или медные соединения.

Большинство современных процессоров используют пластиковую упаковку с распределителем тепла. Обычно ядро заключается в керамическую или пластиковую упаковку, что позволяет предотвратить повреждение. Современные процессоры оснащаются так называемым распределителем тепла, который обеспечивает дополнительную защиту кристалла (рисунок 6).


Рисунок 5. Проводное соединение подложки

Последний этап подразумевает тестирование процессора, что происходит при повышенных температурах, в соответствии со спецификациями процессора. Процессор автоматически устанавливается в тестовый разъем, после чего происходит анализ всех необходимых функций.

Рисунок 6. Упаковка процессора

История производства процессоров

Любой современный процессор состоит из огромного набора транзисторов, выполняющих функции электронных микроскопических переключателей. В отличие от обычного переключателя транзисторы способны переключаться миллиарды, и даже триллионы раз в секунду. Однако чтобы обеспечить такую огромную скорость переключения, необходимо уменьшить размеры этих транзисторов. Кроме того, производительность любого процессора в конечном итоге определяется и количеством самих транзисторов. Именно поэтому со времени создания первой интегральной микросхемы в 1959 году развитие отрасли шло в направлении уменьшения размера транзисторов и одновременного увеличения плотности их размещения на микросхеме.

Когда говорят о прогнозах по увеличению плотности размещения и уменьшению геометрических размеров транзисторов, обычно упоминают так называемый закон Мура. Все началось в 1965 году, за три года до того, как Гордон Мур (Gordon Е. Moore) стал одним из основателей корпорации Intel. В то далекое время технология производства интегральных микросхем позволяла интегрировать в одной микросхеме порядка трех десятков транзисторов, а группа ученых, возглавляемая Гордоном Муром, завершала разработку новых микросхем, объединяющих в себе уже 60 транзисторов. По просьбе журнала Electronics Гордон Мур написал статью, приуроченную к 35-й годовщине издания. В этой статье Мура попросили сделать прогноз относительно того, как будут совершенствоваться полупроводниковые устройства в течение ближайших 10 лет. Проанализировав темпы развития полупроводниковых устройств и экономические факторы за прошедшие шесть лет, Мур предположил, что количество транзисторов на чипе ежегодно будет удваиваться и к 1975 году количество транзисторов в одной интегральной микросхеме составит 65 тысяч.

Конечно, в 1965 году ни сам Гордон Мур, ни кто-либо другой не мог предположить, что опубликованный прогноз на ближайшие десять лет не только в точности сбудется, но и послужит основой для формулирования эмпирического правила развития всей полупроводниковой технологии на много лет вперед. Впрочем, с предсказанием Мура было не все гладко. К 1975 году рост количества элементов в одной микросхеме стал немного отставать от прогноза. Тогда Гордон Мур скорректировал период обновления до 24 месяцев, чтобы компенсировать ожидаемое увеличение сложности полупроводниковых компонентов. В конце 1980-х годов одним из руководителей корпорации Intel была внесена еще одна поправка, и прогноз Мура стал означать удвоение вычислительной производительности каждые 18 месяцев (вычислительная производительность, измеряемая в миллионах командах в секунду (MIPS), увеличивается благодаря росту количества транзисторов).

До сих пор мы преднамеренно употребляли слова «прогноз» или «предсказание» Мура, однако в литературе чаще встречается выражение «закон Мура». Дело в том, что после опубликования упомянутой статьи в журнале Electronics профессор Карвер Мид, коллега Мура из Калифорнийского технологического института, дал этому прогнозу название «закон Мура» и оно прижилось.

Зачем уменьшать размеры транзисторов?

Снижение размеров транзисторов позволяет уменьшить площадь кристалла, а значит и тепловыделение, а более тонкий затвор позволяет подавать меньшее напряжение для переключения, что также снижает энергопотребление и тепловыделение.

Если длина затвора транзистора уменьшается в М раз, то в такое же количество уменьшается и рабочее напряжение затвора. Кроме того, в М раз возрастает скорость работы транзистора и квадратично увеличивается плотность размещения транзисторов на кристалле, а рассеиваемая мощность уменьшается в М 2 раз.

Долгое время уменьшение размеров транзисторов было самым очевидным способом увеличения производительности процессоров. На практике это было не так легко осуществить, однако еще сложнее было придумать такую структуру процессора, чтобы его конвейер работал с максимальной отдачей.

Негативные факторы уменьшения размеров транзисторов

В последние годы “гонка гигагерц” стала заметно затихать. Это связано с тем, что, начиная с 90 нм размеров транзисторов, стали сильно проявляться всевозможные ранее не столь сильно ощутимые негативные факторы: токи утечки, большой разброс параметров и экспоненциальное повышение тепловыделения. Разберемся по порядку.

Существует два тока утечки: ток утечки затвора и подпороговая утечка. Первая вызвана самопроизвольным перемещением электронов между кремниевым субстратом канала и поликремневым затвором. Вторая – самопроизвольным перемещением электронов из истока транзистора в сток. Оба эти эффекта приводят к тому, что приходится поднимать напряжение питания для управления токами в транзисторе, а это негативно сказывается на тепловыделении. Так вот, уменьшая размеры транзистора, мы, прежде всего, уменьшаем его затвор и слой диэлектрика, который является естественным барьером между затвором и каналом. С одной стороны, это улучшает скоростные показатели транзистора (время переключения), но с другой – увеличивает утечку. То есть, получается своеобразный замкнутый круг. Так вот переход на более тонкий технологический процесс – это очередное уменьшение толщины слоя диоксида, и одновременно увеличение утечек. Борьба с утечками – это опять же, увеличение управляющих напряжений, и, соответственно, значительное повышение тепловыделения.

Один из выходов – это применение технологии SOI (кремний на изоляторе), которое внедрила компания AMD в своих 64-разрядных процессорах. Впрочем, это стоило ей немало усилий и преодоление большого количества попутных трудностей. Зато сама технология предоставляет громадное количество преимуществ при сравнительно малом количестве недостатков. Суть технологии, в общем-то, вполне логична – транзистор отделяют от кремневой подложки еще одним тонким слоем изолятора. Достоинств – масса. Никакого неконтролируемого движения электронов под каналом транзистора, сказывающегося на его электрических характеристиках – это раз. После подачи отпирающего тока на затвор, время ионизации канала до рабочего состояния (до момента, пока по нему пойдет рабочий ток) сокращается, то есть, улучшается второй ключевой параметр производительности транзистора, время его включения/выключения – это два. Или же, при той же скорости, можно просто понизить отпирающий ток – это три. Или найти какой-то компромисс между увеличением скорости работы и уменьшением напряжения. При сохранении того же отпирающего тока, увеличение производительности транзистора может быть до 30%. Если оставить частоту той же, то энергосбережение может достигать 50 %. Наконец, характеристики канала становятся более предсказуемыми, а сам транзистор – более устойчивым к случайным ошибкам, вроде тех, что вызывают космические частицы, попадая в субстрат канала, и непредвиденно ионизируя его. Теперь, попадая в подложку, расположенную под слоем изолятора, они никак не сказываются на работе транзистора. Единственным минусом SOI является то, что приходится уменьшать глубину области исток/сток, что прямо и непосредственно сказывается на увеличении ее сопротивления по мере сокращения толщины.

Функцию барьера для электронов, предотвращающего утечку тока затвора, выполнял тонкий слой диоксида кремния – изолятора, находящегося между затвором и каналом. Очевидно, что чем толще этот слой, тем лучше он выполняет свои изоляционные функции. Но он является составной частью канала, и не менее очевидно, что если мы собираемся уменьшать длину канала (размер транзистора), то нам надо уменьшать его толщину, причем, весьма быстрыми темпами. За последние несколько десятилетий толщина этого слоя составляет в среднем порядка 1/45 от всей длины канала. Но у этого процесса есть своё физическое ограничение – минимальная толщина слоя должна составлять около 1 нм, иначе утечка тока затвора приобретет просто нереальные величины.

До недавнего времени материалом, из которого изготовлялся затвор был поликристаллический кремний (поликремний). Поликремний представляет собой высокочистый кремний с содержанием примесей менее 0.01%, состоящий из большого числа небольших кристаллических зёрен, ориентированных друг относительно друга хаотически. Поликремний является сырьем для производства более совершенного вида кремния – монокремния, а также может использоваться в чистом виде наравне с монокремнием в некоторых сферах применения (например, в производстве солнечных модулей).

Монокремний отличается от поликристаллической модификации тем, что в нем кристаллическая структура ориентирована в определенной кристаллографической плоскости.

Ситуация изменилась когда вместо поликремния для изготовления затвора стали использовать комбинацию новых материалов, а вместо оксида кремния в качестве диэлектрика затвора стали использовать диэлектрик High-k, основанный на примеси четырёхвалентного гафния. В таблице 14.1. представлены этапы развития технологического процесса производства микросхем.

Таблица 14.1. Совершенствование технологического процесса

Ввод в производство

Техпроцесс

Размер пластины (мм.)

Соединения

Диэлектрик затвора

Материал затвора

Поликремний

Поликремний

Поликремний

Поликремний

Поликремний

ПЛАН ЛЕКЦИИ

1. Семь поколений процессоров

2. Технология производства

3. Технологические этапы производства микропроцессоров

1. Семь поколений процессоров

Первое поколение (процессоры 8086 и 8088 и математический сопроцессор 8087) положило архитектурную основу – набор «неравноправных» 16-разрядных регистров, сегментную систему адресации в пределах 1 Мб с большим разнообразием режимов, систему команд, систему прерываний и ряд других атрибутов. В процессорах использовалась «малая» конвейеризация: пока одни узлы выполняли текущую команду, блок предварительной выборки выбирал из памяти следующую.

Втрое поколение (80286 и сопроцессор 80287) дополнило семейство так называемым «защищённым режимом», позволяющим пользоваться виртуальной памятьюразмером до 1Гб для каждой задачи, используя адресуемую физическую память в пределах 16 Мб. Защищённый режим стал основой для построения многозадачных операционных систем, в которых система привилегий жестко регламентирует взаимоотношения задач с памятью, операционной системой и друг с другом. Следует отметить, что производительность процессоров 80286 возросла не только в связи с ростом тактовой частоты, а также за счет значительного усовершенствования конвейера.

Третье поколение (80386/80387 с «суффиксами» DX и SX, определяющими разрядность внешней шины) ознаменовалось переходом к 32-разрядной архитектуре. Кроме расширения диапазона представляемых величин (16 бит отображают целые числа в диапазоне от 0 до 65535 или от –32768 до +32767, а 32 бита – более четырёх миллиардов), увеличилась ёмкость адресуемой памяти. С этими процессорами начала широко использоваться операционная система система Microsoft Windows.

Четвертое поколение (80486 также DX и SX) не добавило больших изменений в архитектуру, однако былпринят ряд мер для повышения производительности. В этих процессорах был значительно усложнен исполнительный конвейер. Производители отказались от внешнего сопроцессора – его сталиразмещаться на одном кристалле с центральным.

Пятое поколение (процессор Pentium у фирмы Intel и К5 у фирмы AMD) дало суперскалярную архитектуру. Для быстрого снабжения конвейеров командами и данными из памяти шина данных этих процессоров сделана 64-разрядной. Позже у этого поколения появилось расширение ММХ (Matrics Math Extensions instruction set ) – набор команд для расширения матричных математических операций (первоначально Multimedia Extension instruction set ) – набор команд для мультимедиа-расширения)). Традиционные 32-разрядные процессоры могут выполнять операции сложение двух 8-разрядных чисел, размещая каждое из них в младших разрядах 32-разрядных регистров. При этом 24 старших разряда регистров не используются, и потому, получается, что при одной операции сложения ADD осуществляется просто сложение двух 8-разрядных чисел. Команды ММХ оперируют сразу с 64 разрядами, где могут храниться восемь 8-разрядных чисел, причем имеется возможность выполнить их сложение с другими 8-разрядными числами в процессе одной операции ADD. Регистры ММХ могут употребляться также для одновременного сложения четырех 16-разрядных слов или двух 32-разряных длинных слов. Этот принцип получил название SIMD (Single Instruction /Multiple Data - «один поток команд/много потоков данных»). Новые командыв основном были предназначеныдля ускорения выполнения мультимедийныхпрограмм, но использовать их с технологией мультимедиа. В ММХ появился и новый тип арифметики - с насыщением: если результат операции не помещается в разрядной сетке, то переполнения (или «антипереполнения») не происходит, а устанавливается максимально (или минимально) возможное значение числа.

Шестое поколение процессоров взяло своё начало с Pentium Pro и продолжилось в процессорах Pentium III, Celeron и Xeon (у фирмы AMD Примером могут служить процессоры К6, К6-2, К6-2+, К6-III). Основой здесьявляетсядинамическое исполнение, исполнение команд не в том порядке, который предписывает программный код, а в том, как будет более удобно дляпроцессора. Здесь следует отметить, что здесь между процессорамипятого и шестого поколения существует сходство, а именно добавление расширенияпятое поколение было дополнено расширением ММХ,шестое поколение получило расширения, уеличивающие возможности ММХ. У AMD это расширение 3dNnoy!, а у Intel - SSE (Streaming SIMD Extensions – потоковые расширения SIMD).

Седьмое поколение началось с процессора Athlon фирмы AMD. Процессор обладал характеристикамиобуславливающиеразвитие суперскалярности и суперконвейерности . Позже компанияIntel также выпустила свой процессор седьмого поколения Pentium 4.

2. Технология производства

В настоящее время мы можем наблюдатьинтересную тенденцию на рынке: с одной стороны компании-производители пытаются быстрыми темпами внедрить новые техпроцессы и технологии в свои продукцию, с другой же стороны, наблюдается искусственное ограничение роста частот процессоров. Это объясняется тем, что, сказывается ощущение неполной готовности рынка к очередной смене семейств процессоров, а фирмы производители еще не получили достаточно прибыли от объема продаж производящихся сейчас CPU. Здесь следует отметить, что для компаний основополагающей по сравнению с другими интересами является цена готового продукта. Однако большое значение в снижение темпов развития микропроцессоров связано с пониманием необходимости внедрения новых технологий, которые будут увеличивать производительность при минимальном объеме технологических затрат

Производителям при переходе на новые техпроцессы пришлось решать ряд проблем. Технологическая норма 90 нм оказалась значительно серьезным технологическим препятствием для многих производителей чипов. Это подтверждает и компания TSMC, данная компания занимается производством чипов для многих крупных производителей рынка, а именно компании AMD, nVidia , ATI, VIA. Долгое время у неё не получалось отладить производство чипов по технологии 0,09 мкм, это привело к низкому выходу годных кристаллов. Это привело к тому, что AMD долгое время переносила выпуск своих процессоров с технологией SOI (Silicon-on-Insulator ). Обуславливается же это тем, что именно на этой размерности элементов проявились недостатки ранее не являющиеся ощутимыми, такие кактоки утечки, большой разброс параметров и экспоненциальное повышение тепловыделения. Один из альтернативных выходов – это применение технологии SOI кремний на изоляторе, который был недавно внедрён AMD в своих 64-разрядных процессорах. Однако, это обошлось ей немалым количеством усилий и преодолением немалого количества технологических барьеров. Но следует отметить, что данная технология имеет много приимуществ которые способны скомпенсировать её недостатки. Сущность этой технологии, вполне логична - транзистор отделяется от кремневой подложки еще одним тонким слоем изолятора. К положительным качествам можно отнести. Отсутствие неконтролируемого движения электронов под каналом транзистора, влияющия на его электрических характеристиках - раз. После подачи отпирающего тока на затвор, время ионизации канала до рабочего состояния, до момента, пока по нему пойдет рабочий ток, уменьшается, это влечёт за собой улучшение второго ключевого параметра производительности транзистора, время его включения/выключения. Можно также, при той же скорости, просто понизить отпирающий ток - три. Или же найти какое-то решение между возможностью увеличения скорости работы и возможностью уменьшения напряжения. При сохранении того же отпирающего тока, увеличение производительности транзистора может составитьдо 30%, если оставить частоту той же, делая экцент на энергосбережение, в этом случае производительность может составить - до 50%. В итоге, характеристики канала становятся более предсказуемыми, а сам транзистор становится более устойчивым к спорадическим ошибкам, примером которых могут служить космические частицы, попадая в субстрат канала, и непредвиденно ионизируя его. Попадая в подложку, расположенную под слоем изолятора, они никак не влияют на работу транзистора. Единственным недостатком SOI является то, что необходимо уменьшать глубину области эмиттер/коллектор, что в свою очередь сказывается на увеличении ее сопротивления по мере сокращения толщины.

Ещё одна причина, которая способствовала замедлению темпов роста частот – это невысокая активность производителей на рынке. К примеру, каждый компанияAMD работала над повсеместным внедрением 64-битных процессоров, Intel в этот период усовершенствовала новый техпроцесс, отладки для увеличенная выхода годных кристаллов.

Внедрение новых технологий в техпроцессы очевидна, но технологам это с каждым разом даётся всё труднее. Первые процессоры Pentium (1993г) производились по техпроцессу 0,8 мкм, затем по 0,6 мкм. В 1995 году впервые для процессоров 6-го поколения был применен техпроцесс 0,35 мкм. В 1997 году он сменился на 0,25 мкм, а в 1999 – на 0,18 мкм. Современные процессоры выполняются по технологии 0,13 и 0,09 мкм введённая в 2004году.

Необходимо описать саму структуру транзистора, а именно - тонкий слой диоксида кремния, изолятора, находящегося между затвором и каналом, и выполняющего функцию - барьера для электронов, предотвращающего утечку тока затвора. Соответственно, что чем толще этот слой, тем лучше он выполняет свои изоляционные функции, но он является составной частью канала, и не менее очевидно, что если производители собираются уменьшать длину канала (размер транзистора), то надо уменьшать его толщину весьма быстрыми темпами. За последние несколько десятилетий толщина этого слоя составляет в среднем порядка 1/45 от всей длины канала. Но у этого процесса есть свой конец - как утверждал все тот же Intel, при продолжении использования SiO2, как это было на протяжении последних 30 лет, минимальная толщина слоя будет составлять 2.3. нм, иначе утечка приобретет просто нереальные величины. Для снижения подканальной утечки до последнего времени ничего не предпринималось, в настоящее время ситуация начинает меняться, поскольку рабочий ток, наряду со временем срабатывания затвора, является одним из двух основных параметров, характеризующих скорость работы транзистора, а утечка в выключенном состоянии на нем непосредственно отражается (на сохранении требуемой эффективности транзистора). Необходимо, соответственно, увеличивать рабочий ток, со всеми вытекающими отсюда последствиями.

Основные этапы производства

Изготовление микропроцессора - это сложнейший процесс, включающий более 300 этапов. Микропроцессоры формируются на поверхности тонких круговых пластин кремния - подложках, в результате определенной последовательности различных процессов обработки с использованием химических препаратов, газов и ультрафиолетового излучения.

Подложки обычно имеют диаметр 200 миллиметров. Однако корпорация Intel уже перешла на пластины диаметром 450 -миллиметровые подложки. Переход на пластины большего диаметра позволит снизить себестоимость производства микросхем, повысить эффективность использования энергии и сократить выбросы вредных газов в атмосферу. Площадь поверхности 450-миллиметровых подложек более чем в два раза превышает показатель для пластин размером 300 мм. Как результат, из одной 450-миллиметровой подложки можно получить вдвое больше конечных изделий.

Пластины изготавливают из кремния, который очищают, плавят и выращивают из него длинные цилиндрические кристаллы. Затем кристаллы разрезают на тонкие пластины и полируют их до тех пор, пока их поверхности не станут зеркально гладкими и свободными от дефектов. Далее последовательно циклически повторяясь производят термическое оксидирование, фотолитографию, диффузию примеси, эпитаксию.

В процессе изготовления микросхем на пластины-заготовки наносят в виде тщательно рассчитанных рисунков тончайшие слои материалов. На одной пластине помещается до нескольких сотен микропроцессоров. Весь процесс производства процессоров можно разделить на несколько этапов: выращивание диоксида кремния и создание проводящих областей, тестирование и изготовление.

Выращивание диоксида кремния и создание проводящих областей

Процесс производства микропроцессора начинается с "выращивания" на поверхности отполированной пластины изоляционного слоя диоксида кремния. Осуществляется этот этап в электрической печи при очень высокой температуре. Толщина оксидного слоя зависит от температуры и времени, которое пластина проводит в печи.

Затем следует фотолитография - процесс, в ходе которого на поверхности пластины формируется рисунок-схема. Сначала на пластину наносят временный слой светочувствительного материала – фоторезист , на который с помощью ультрафиолетового излучения проецируют изображение прозрачных участков шаблона, или фотомаски . Маски изготавливают при проектировании процессора и используют для формирования рисунков схем в каждом слое процессора. Под воздействием излучения засвеченные участки фотослоя становятся растворимыми, и их удаляют с помощью растворителя (плавиковая кислота), открывая находящийся под ними диоксид кремния.

Открытый диоксид кремния удаляют с помощью процесса, который называется "травлением". Затем убирают оставшийся фотослой, в итоге на полупроводниковой пластине остается рисунок из диоксида кремния. В результате ряда дополнительных операций фотолитографии и травления на пластину наносят также поликристаллический кремний, обладающий свойствами проводника. В ходе следующей операции, называемой "легированием", открытые участки кремниевой пластины бомбардируют ионами различных химических элементов, которые формируют в кремнии отрицательные и положительные заряды, изменяющие электрическую проводимость этих участков.

Наложение новых слоев с последующим травлением схемы осуществляется несколько раз, при этом для межслойных соединений в слоях оставляются "окна", которые заполняют металлом, формируя электрические соединения между слоями. В своем 0.13-микронном технологическом процессе корпорация Intel использовала медные проводники. В 0.18-микронном производственном процессе и процессах предыдущих поколений Intel применяла алюминий. И медь, и алюминий - хорошие проводники электричества. При использовании 0,18-мкм техпроцесса использовалось 6 слоев, при внедрении 90 нм техпроцесса в 2004 году применили 7 слоев кремния.

Каждый слой процессора имеет свой собственный рисунок, в совокупности все эти слои образуют трехмерную электронную схему. Нанесение слоев повторяют 20 - 25 раз в течение нескольких недель.

Тестирование

Для устойчивости к воздействиям, которым подвергаются подложки в процессе нанесения слоев, кремниевые пластины изначально должны быть достаточно толстыми. Поэтому перед тем как разрезать пластину на отдельные микропроцессоры, ее толщину с помощью специальных процессов уменьшают на 33% и удаляют загрязнения с обратной стороны. После этого на обратную сторону "обработанной" пластины наносят слой специального материала, который улучшает последующее крепление кристалла к корпусу. Данный слой обеспечивает электрический контакт между задней поверхностью интегральной схемы и корпусом после сборки.

После этого производят тестирование пластины, для проверки качества выполнения всех операций обработки. Для определения, корректности работы процессора, проверяют их отдельные компоненты. В случаеобнаружения неисправности, производят анализ полученных данных, для выявления этапа на котором произошла ошибка.

Затем к каждому процессору подключают электрические зонды и подают питание. Процессоры тестируются компьютером, он определяет, соответствуют ли характеристики изготовленных процессоров заданным параметрам.

Изготовление корпуса

После тестирования пластины отправляются в сборочное производство, гдес помощью специальной прецизионной пилы их нарезают на маленькие прямоугольники, каждый из которых содержит интегральную схему. Неработающие кристаллы отбраковываются.

Затем каждый кристалл помещают в индивидуальный корпус. Корпус служит защитой кристалла от внешних воздействий и обеспечивает его электрическое соединение с платой, на которую он будет установлен. Крошечные шарики припоя, расположенные в определенных точках кристалла, припаивают к электрическим выводам корпуса. На этом этапе электрические сигналы могут поступать с платы на кристалл и обратно

После установки кристалла в корпус процессор производят повторное тестирование, для определения его работоспособности. Неисправные процессоры отбраковывают, а исправные подвергают нагрузочным испытаниям: воздействию различных температурных и влажностных режимов, а также электростатических разрядов. После каждого нагрузочного испытания процессор тестируют для определения его функционального состояния. Затем происходит сортировка процессоров сортируют в зависимости от их поведения при различных тактовых частотах и напряжениях питания.

3. Технологические этапы производства микропроцессоров

Как делаются чипы

Производство чипов заключается в наложении тонких слоёв со сложным "узором" на кремниевые подложки. Сначала создаётся изолирующий слой, который работает как электрический затвор. Подложки нарезаются монокристалла-цилиндра тонкими "блинами", чтобы потом легко разрезать на отдельные кристаллы процессоров. Для проведения тестов каждого кристалла на подложке используются электрические зонды. Наконец, подложка разрезается на отдельные ядра, нерабочие ядра сразу же отбраковываются. В зависимости от характеристик, ядро становится тем или иным процессором и заключается в упаковку, которая облегчает установку процессора на материнскую плату. Все функциональные блоки проходят через интенсивные стресс-тесты .

Всё начинается с подложек

Первый шаг в производстве процессоров выполняется в чистой комнате. Следует отметить, что это очень капиталоёмкое производство. На постройку современного завода со всем оборудованием может быть затрачено более 2-3 млрд. долларов. Только после полной наладки и тестирования оборудования завод может серийно выпускать процессоры.

В общем, процесс производства чипов состоит из ряда этапов обработки подложек. Сюда входит и создание самих подложек, которые в последствии будут разрезаны на отдельные кристаллы.

Производство подложек

Первый этап - выращивания монокристалла. Для этого затравочный кристалл внедряется в ванну с расплавленным кремнием, который находится чуть выше точки плавления поликристаллического кремния. Важно, чтобы кристаллы росли медленно приблизительно сутки, чтобы гарантировать правильное расположение атомов. Поликристаллический или аморфный кремний состоит из множества разномастных кристаллов, которые приведут к появлению нежелательных поверхностных структур с плохими электрическими свойствами.

Когда кремний будет расплавлен, его можно легировать с помощью других веществ, меняющих его электрические свойства. Весь процесс происходит в герметичном помещении со специальным воздушным составом, чтобы кремний не окислялся.

Монокристалл разрезается на "блины" с помощью кольцевой высоко - точной алмазной пилы, которая не создаёт крупных неровностей на поверхности подложек. При этом поверхность подложек всё равно не идеально плоская, поэтому необходимы дополнительные операции. Внешний вид монокристаллов можно увидеть на рисунке 1.

Рис. 1. Внешний вид монокристалла

Сначала с помощью вращающихся стальных пластин и абразивного материала оксида алюминия, снимается толстый слой с подложек (процесс называется притиркой). В результате устраняются неровности размером от 0,05 мм до, примерно, 0,002 мм (2 000 нм). Затем следует закруглить края каждой подложки, поскольку при острых кромках могут отслаиваться слои. Далее используется процесс травления, когда с помощью разных химикатов (плавиковая кислота, уксусная кислота, азотная кислота) поверхность сглаживается ещё примерно на 50 мкм. Физически поверхность не ухудшается, поскольку весь процесс полностью химический. Он позволяет удалить оставшиеся погрешности в структуре кристалла, в результате чего поверхность будет близка к идеалу.

Последний шаг - полировка, которая обеспечивает сглаживание поверхности до неровностей, максимум, 3 нм. Полировка осуществляется при помощи смеси гидроксида натрия и гранулированного диоксида кремния.

В настоящее время подложки для микропроцессоров имеют диаметр 300 или 450 мм, что позволяет производителям чипов получать с каждой из них множество процессоров. В целом, чем больше диаметр подложки, тем больше можно произвести чипов одинакового размера. 300-мм подложка, например, даёт более чем в два раза больше процессоров, чем 200-мм.

Легирование и диффузия

Легирование производится и с готовой подложкой, и во время процессов фотолитографии. Это даёт возможность изменять электрические свойства определённых областей и слоёв, а не всей структуры кристалла.

Добавление легирующего вещества может происходить при помощи диффузии. Атомы легирующего вещества заполняют свободное пространство внутри кристаллической решётки, между структурами кремния. В некоторых случаях можно легировать и существующую структуру. Диффузия осуществляется с помощью газов (азот и аргон) или с помощью твёрдых веществ или других источников легирующего вещества.

Создание маски

Для созданияучастков интегральной схемы, используется процесс фотолитографии. При этом нужно облучать не всю поверхность подложки, в таких случаях важно использовать так называемые маски, которые пропускают излучение высокой интенсивности только на определённые участки. Маски можно сравнить с чёрно-белым негативом. Интегральные схемы имеют множество слоёв (20 и больше), и для каждого из них требуется своя маска.

Структура из тонкой хромовой плёнки наносится на поверхность пластины из кварцевого стекла, чтобы создать шаблон. При этом дорогие инструменты, использующие поток электронов или лазер, прописывают необходимые данные интегральной схемы, в результате чего получается шаблон из хрома на поверхности кварцевой подложки. Следует отметить, что любое изменение интегральной схемы приводит к необходимости производства новых масок, поэтому весь процесс внесения правок очень дорогостоящий.

Фотолиграфия позволяет сформировать на кремниевой подложке -структуру. Процесс повторяется несколько раз, пока не будет создано множество слоёв. Слои могут включать в себя разные материалы, здесь также обеспечивается соединение микроскопическими проволочками. Перед началом процесса фотолитографии, производится очистка и нагрев подложки, чтобы удалить липкие частицы и воду. На следующем этапеподложка с помощью специального устройства покрывается диоксидом кремния. Далее на подложку наносится связывающий агент, который гарантирует, что фоторезистивный материал, который будет нанесён на следующем шаге, останется на подложке. Фоторезистивный материал наносится на середину подложки, которая потом начинает вращаться с большой скоростью, чтобы слой равномерно распределился по всей поверхности подложки. Затем подложка вновь нагревается. Процесс фотолитографии представлен на рисунке 2

Рис. 2. Процесс фотолитографии

Затем через маску обложка облучается квантовым лазером, жёстким ультрафиолетовым излучением, рентгеновским излучением, пучками электронов или ионов - могут использоваться все эти источники света или энергии. Пучки электронов применяются, главным образом, для создания масок, рентгеновские лучи и пучки ионов - для исследовательских целей, а в промышленном производстве сегодня доминируют жёсткое УФ-излучение и газовые лазеры.

Жёсткое УФ-излучение с длиной волны 13,5 нм облучает фоторезистивный материал, проходя через маску. Для необходимых результатов очень важны время проецирования и фокусировки. Плохая фокусировка приведёт к тому, что останутся лишние частицы фоторезистивного материала, поскольку некоторые отверстия в маске не будут облучены должным образом. Аналогичная ситуация получиться если время проецирования будет слишком маленьким. Тогда структура из фоторезистивного материала будет слишком широкой, участки под отверстиями будут недодержанными. Однако, чрезмерное время проецирования создаёт слишком большие участки под отверстиями и слишком узкую структуру из фоторезистивного материала. В этом и заключается сложность регулирования процесса производства. Неправильная регулировка приведёт к серьёзным отклонениям и в соединительных проводниках. Специальная шаговая проекционная установка производит перемещение подложки в нужном положении. После чего можно проецировать строчку или один участок, в большинстве случаяхсоответствующий одному кристаллу процессора. Дополнительные микроустановки могут вносить дополнительны изменения. К примеру отлаживать существующую технологию и оптимизировать техпроцесс. Микроустановки обычно работают над площадями меньше 1 кв. мм, в то время как обычные установки покрывают площади большего размера.

Существуют мокрый и сухой процессы травления, которыми обрабатываются участки диоксида кремния. Мокрые процессы используют химические соединения, а сухие процессы - газ. Отдельный процесс заключается и в удалении остатков фоторезистивного материала. Производители часто сочетают мокрое и сухое удаление, чтобы фоторезистивный материал был полностью удалён. Это важно, поскольку фоторезистивный материал органический, и если его не удалить, он может привести к появлению дефектов на подложке.

После травления и очистки можно приступать к осмотру подложки, что обычно и происходит на каждом важном этапе, или переводить подложку на новый цикл фотолитографии. Проверка подложек представлен на рисунке 3.

Рис. 3. Проверка подложек

Тестирование готовых подложек производят на установках зондового контроля, которые работают со всей подложкой. На контакты каждого кристалла накладываются контакты зонда, что позволяет проводить электрические тесты. С помощью программного обеспечения тестируются все функции каждого ядра. Процесс Разрезания подложки представленна рисунке 4.

Рис. 4. Процесс разрезания подложки

При помощи разрезания подложки получают отдельные ядра. В случае выявления дефектных кристаллов (содержащие ошибки) производится их, отделение от годных. Раньше повреждённые кристаллы физически маркировались, теперь в этом нет необходимости, вся информация хранится в единой базе данных.

Далее функциональное ядро необходимо поместить в процессорную упаковку, для чего используется клейкий материал. После этого нужно произвести проводные соединения, связывающие ножки упаковки и сам кристалл (рисунок 5). Для этого используются золотые, алюминиевые или медные соединения.

Рис. 5. Проводное соединение подложки

Большая часть современных процессоров используют пластиковую упаковку с теплораспределением . В частности ядро упаковывается в керамическую или пластиковую упаковку, это способствует предотвращению механических повреждений. Современные процессоры оснащаются распределителем тепла, устройства обеспечивающие отвод тепла и защиту кристалла (рисунок 6).

Рис. 6. Упаковка процессора

Последний этап - это тестирование процессора, что производится при повышенных температурах, в соответствии со спецификациями процессора. Процессор автоматически устанавливается в тестовый разъем, после чего происходит анализ всех необходимых функций.