Импульсный блок питания из деталей бп компьютера. Что можно сделать из компьютерного блока питания? Как сделать регулирующий БП из обычного, от принтера

Обычно для переделки компьютерных блоков питания используют блоки ATX, собранные на микросхемах TL494 (KA7500), но в последнее время такие блоки не попадаются. Их стали собирать на более специализированных микросхемах, на которых сложнее сделать регулировку тока и напряжения с нуля. По этой причине был взят для доработки старый блок типа AT на 200W, который был в наличии.

Этапы переделки

1. Вмонтирована плата зарядного устройства от мобильного телефона Nokia AC-12E с доработкой. В принципе можно использовать и другие зарядные устройства.


Доработка заключалась в перемотке III обмотки трансформатора и установке дополнительного диода и конденсатора. После переделки блок стал выдавать напряжения +8V для питания вентилятора и вольтметра-амперметра и +20V для питания микросхемы управления TL494N.


2. С платы блока AT выпаяны детали самозапуска первичной цепи и цепи регулировки выходного напряжения. Также были удалены все вторичные выпрямители.


Выходной выпрямитель переделан по мостовой схеме. Использованы три диодных сборки MBR20100CT. Дроссель перемотан - диаметр кольца 27 мм, 50 витков в 2 провода ПЭЛ 1 мм. В качестве нелинейной нагрузки применена лампа накаливания 26V 0,12A. С ней напряжение и ток хорошо регулируются от нуля.
Для обеспечения устойчивой работы микросхемы изменены цепи коррекции. Для грубой и точной регулировок напряжения и тока применено особое подключение потенциометров. Такое подключение позволяет плавно изменять напряжение и ток в любом месте при любом положении потенциометра грубой регулировки.

Особого внимания требует шунт, провода для регулировки и измерения должны подключатся непосредственно к его выводам, так как напряжение, снимаемое с него невелико. На схеме эти подключения показаны фиолетовыми стрелками. Измеряемое напряжение для цепи регулирования снимается с делителя с коррекцией для устранения самовозбуждения в цепях управления.
Верхний предел установки напряжения подбираются резисторами R38, R39 и R40. Верхний предел установки тока подбирается резистором R13.


3. Для измерения тока и напряжения применен вольтметр-амперметр


За основу взята схема «Суперпростой амперметр и вольтметр на супердоступных деталях (автовыбор диапазона)» от Eddy71 .
В схему введена регулировка баланса ОУ при измерении тока, что позволило резко улучшить линейность. На схеме это потенциометр «Баланс ОУ», напряжение с которого поступает на прямой или инверсный входы (подбирается, куда подключить, на схеме обозначено зелеными линиями).
Автоматический выбор диапазона измерения реализован программно. Первый диапазон до 9,99A с указанием сотых долей, второй до 12A с указанием десятых долей ампера.


4. Программа для микроконтроллера написана на СИ (mikroC PRO for PIC)и снабжена комментариями.

Конструкция и детали

Конструктивно все элементы размещены в корпусе блока AT. Плата зарядного устройства закреплена на радиаторе с силовыми транзисторами. Сетевые разъемы убраны и на их месте установлен выключатель и выходные зажимы. Сбоку на крышке блока находятся резисторы установки напряжения и тока и индикатор вольтметра-амперметра. Закреплены они на фальшпанели с внутренней стороны крышки.

Чертежи выполнены в программе Frontplatten-Designer 1.0. Междукаскадный трансформатор блока AT не переделывается. Выходной трансформатор блока AT тоже не переделывается, просто средний отвод, выходящий из катушки, отпаивается от платы и изолируется. Выпрямительные диоды заменены на новые, указанные в схеме.
Шунт взят от неисправного тестера и закреплен на изоляционных стойках на радиаторе с диодами. Плата для вольтметра-амперметра использована от «Суперпростого амперметра и вольтметра на супердоступных деталях (автовыбор диапазона)» от Eddy71 с последующей доработкой (перерезаны дорожки, согласно схемы).

Замеченные особенности недостатки

В качестве базового блока использован блок AT 200 W. К сожалению, он имеет довольно маленький радиатор для силовых транзисторов. При этом вентилятор подключен к напряжению 8 Вольт (для уменьшения создаваемого шума), поэтому токи больше 6 – 7 Ампер, снимать можно только кратковременно, во избежание перегрева транзисторов.

Файлы

Файлы схем, плат, чертежей и исходники и прошивка
🕗 10/01/13 ⚖️ 70,3 Kb ⇣ 521

Идея переделать обычный компьютерный блок питания (далее в некоторых моментах БП) в модульный приходит только оптимистам и профессиональным пользователям ПК. В данной статье мы подробно обговорим все нюансы создания вручную БП со сменными проводами.

Для начала давайте-ка узнаем, что такое блок питания и из чего он состоит. Блок питания — это устройство, обеспечивающее питание электроприбора электрической энергией. Состоит из следующих комплектующих:

Входные цепи:

Полупроводниковый резистор (предотвращает распространение помех в сеть)

Пассивный или активный коллектор мощности (снижает нагрузку на сеть)

Диодный мост

Конденсаторный фильтр

Выходные цепи:

Нагрузочные резисторы

Конденсаторы (выходные)

Дроссель групповой стабилизации (выходной)

Выпрямители (выходные)

Преобразователь:

Цепи обратной связи

Формирователь напряжения

Высокочастотный трансформатор (импульсный)

Схема управления самим преобразователем

Преобразователь (полумостовой)

Для чего нужен модульный блок питания:

Таким устройством хотят обзавестись, как правило, профессиональные геймеры, горящие желанием выжать все соки из своего железа. Открыто известно, что быстрый компьютер — это холодный компьютер. А в модульном БП как раз-таки отсутствуют лишние провода, что улучшает продуваемость и экономит место в системном блоке.

Особенности использования

Перед созданием модульного БП очень важно разобраться в его недостатках и преимуществах.

Преимущества:

Такие блоки питания, как правило, легко найти

Состоят из всех важных компонентов, в т. ч. готовых импульсных трансформаторов (ИТ)

Небольшой вес (до 2 кг), что в 5 раз меньше веса блока питания (трансформаторного)

Нет лишних проводов и, следовательно, путаницы

Универсальность

Недостатки:

Нет возможности применения для электрического питания радиостанций из-за наличия импульсного преобразования

При небольших нагрузках отсутствует низкое напряжение на выходе (менее 5 В)

Несмотря на недостатки, блок питания такого типа отлично подойдёт для проверки и отладки самых различных устройств, а также питания автомобильной электроники. А благодаря режиму стабилизации тока, его можно успешно использовать в роли ЗУ для аккумуляторов.

Важно: конденсаторы на плате внутри блока питания опасны (в работоспособном состоянии, разумеется). Именно поэтому важно оставить его не подключенным примерно на 48 часов, чтобы конденсаторы успешно разрядились. Но если вы хотите ускорить этот процесс, с помощью самой обычной скрепки просто замкните такие провода, как черный и зеленый (разъёма ATX). Далее включите всё еще не подключенный БП.

Процесс переделки

Инструменты

Ниже приведён перечень инструментов и материалов для изготовления модульного блока питания:

Блок питания (минимум 150 ватт)

Ручная дрель

Пассатижи

Кусачки

Развёртка (инструмент)

Паяльник

Изолента

Трубки (термоусаживаемые)

Клеммы (устройство, посредством которого провода присоединяют к аппарату)

Светоизлучающий диод (LED)

Резистор (токоограничивающий, для светодиода, 330 Ом)

Гасящий резистор

Низковольтный выключатель

Шнур питания

Процесс

Шаг 1. Вскрытие корпуса

Легко и непринуждённо откручиваем 4 болта на крышке и снимаем её.

Как можете видеть, передняя стенка нашего подопытного БП имеет структуру сетки, что для установки разъёмов не подойдет. Исходя из этого, нам надо будет часть верхней крышки прикрепить к данной сетке. Однако, если передняя часть вашего БП выполнена из сплошного металла, делать вышеперечисленные действия не нужно.

Мы переднюю панель сделали металлической по трем причинам:

Прикреплять его к нынешней конструкции довольно просто

Установка коннекторов для подключения модульного типа облегчится

Фронтальная стенка нашего БП сетчатая

Шаг 2. Установка необходимых разъёмов

Для подключения линии ATX (состоит из 24 контактов) мы будем использовать последовательный порт (состоит 25 контактов). Электрические соединители Molex мы подключим с помощью обычных 4-х контактных микрофонных разъёмов.

Размещать разъёмы начинаем с параллельного порта, т.к. другие линии проще переместить на несколько сантиметров, нежели основную ATX. Исходя из этого, линия ATX будет располагаться справа (весьма привычная для нее позиция), а остальные 4 разъёма будут в верхнем ряду. Размечаем, монтируем.

Важно: во время работы с мощными блоками питания (500+ ватт) обращайте внимание на качественные разъёмы, т.к. обычный порт (параллельный) не сможет выдержать высокой нагрузки мощного аппарата (например, игрового компьютера).

Шаг 3. Режем и «одеваем» кабели

Порядок резки кабелей полностью зависит от вас, но мы советуем сначала порезать самый длинный кабель, что сразу позволит избежать большого беспорядка внутри БП.

Шаг 4. Крышка для блока питания

Теперь, раз уж, созданный нами блок питания имеет провода с оплёткой, можно приступать к крышке. Можно приобрести в магазине готовую деталь (предпочтительно из акрила) за небольшую сумму, а можно сделать всё самому, благо в таком случае результат ограничен лишь вашей фантазией.

Ниже приведён пример акрилового корпуса:

Как видите, блок питания получился у нас довольно симпатичным. Этому поспособствовали два кулера с подстветкой. К тому же вы всегда сможете легко поменять оплётку кабелей и корпус под свой вкус.

Шаг 5. Включение

Первым делом подключим кабель к разъёму на тыльной стороне блока питания. Если в ваш БП встроен выключатель, включите его и обратите внимание, загорелся ли индикатор. Проверять работоспособность блока питания можно с помощью лампочки 12 В, подсоединяя её к выходам.

Важно убедиться в том, что ни у одного провода нет замыкания.

Готовые и альтернативные решения:

Что касается этого вопроса, здесь, думаю, наши читатели поделятся на 2 лагеря:

Те, кто предпочтут просто пойти и купить новый блок питания (неожиданно, правда?)

Те, кому большее удовольствие доставит само создание блока питания вручную

Что касается меня, то я могу лишь предупредить вас (если вы не очень разбираетесь в этой сфере) не пробовать разбирать/собирать блок питания, ибо это может закончиться плачевно: от порчи техники до фатального удара током.

Так что будьте бдительны и, главное, уверены в себе.

Самостоятельное изготовление блока питания также обладает своими преимуществами и недостатками:

Преимущества:

Не требуется больших затрат на всё

Не нужно быть инженером

Возможность создать нечто уникальное

Интересное занятие с некоторой пользой для себя

Недостатки:

Создать БП могут только люди, знающие принцип его работы

Опасность в виде высокого напряжения (выше 30 вольт/мА — летальный исход)

Такая переделка лишает блок питания гарантии стабильности

В неприятностях в работе системы виноваты будете только вы

Важно: при работе с источником питания вы обязательно должны быть не заземлены, иначе попадания тока в ваше тело не избежать. Не забывайте об этом ни на миг.

Выводы:

Вы стали свидетелем того, что без особых затрат и знаний инженера можно создать блок питания модульного типа, причём сделать его не только полностью работоспособным, но ещё и довольно аккуратным и стильным, давая волю своей фантазии.

Но важно помнить, что блок питания — не совсем простая вещь, а изменяя что-либо в нём, вы изменяете принцип работы всей системы — а это риск на нестабильность.

Сегодня не редко можно увидеть, как люди выбрасывают компьютерные блоки питания. Ну или БП просто валяются без дела, собирая пыль.

А ведь их можно использовать в хозяйстве! В этой статье я расскажу, какие напряжения можно получить на выходе обычного компьютерного блока питания.

Небольшой ликбез о напряжениях и токах компьютерного БП

Во-первых, не стоит пренебрегать техникой безопасности.

Если на выходе блока питания мы имеем дело с безопасными для здоровья напряжениями, то вот на входе и внутри него 220 и 110 Вольт! Поэтому, соблюдайте технику безопасности. И позаботьтесь о том, чтобы никто другой не пострадал от экспериментов!

Во-вторых, нам потребуется Вольтметр или мультиметр. С помощью него можно измерить напряжения и определить полярность напряжения (найти плюс и минус).

В-третьих, на блоке питания вы можете найти наклейку, на которой будет обозначен максимальный ток, на который рассчитан блок питания, по каждому напряжению.

На всякий случай отнимите от написанной цифры 10%. Так вы получите наиболее точное значение (производители часто врут).

В-четвертых, блок питания ПК типа АТХ предназначен для формирования постоянных питающих напряжений +3.3V, +5V, +12V, -5V, -12V. Поэтому не пытайтесь получить на выходе переменное напряжение.Мы же расширим набор напряжений путем комбинирования номинальных.

Ну что, усвоили? Тогда продолжаем. Пора определиться с разъемами и напряжениями на их контактах.

Разъемы и напряжения компьютерного блока питания

Цветовая маркировка напряжений компьютерного блока питания

Как вы могли заметить, провода, выходящие из блока питания, имеют свой цвет. Это не просто так. Каждый цвет обозначает напряжение. Большинство производителей стараются придерживаться одного стандарта, но бывают совсем китайские блоки питания и цвет может не совпадать (именно поэтому мультиметр в помощь).

В нормальных БП маркировка по цветам проводов такая:

  • Черный — общий провод, «земля», GND
  • Белый — минус 5V
  • Синий — минус 12V
  • Желтый — плюс 12V
  • Красный — плюс 5V
  • Оранжевый — плюс 3.3V
  • Зеленый — включение (PS-ON)
  • Серый — POWER-OK (POWERGOOD)
  • Фиолетовый — 5VSB (дежурного питания).

Распиновка разъемов блока питания AT и ATX

Для вашего удобства я подобрал ряд картинок с распиновкой всех типов разъемов блока питания на сегодняшний день.

Для начала изучим типы и виды разъемов (коннекторов) стандартного блока питания.

Для «запитки» материнской платы используется разъем ATX с 24 контактами или разъем AT с 20-ю контактами. Он же используется для включения блока питания.

Для жестких дисков, сидиромов, картридеров и прочего используется MOLEX.

Большая редкость сегодня разъем для flopy — дисков. Но на старых БП можно встретить.

Для питания процессора используется 4-контактный разъем CPU. Их бывает два или еще сдвоеный, то есть 8-контактный, для мощных процессоров.

Разъем SATA — пришел на смену разъема MOLEX. Используется для тех же целей, что и MOLEX, но на более новых устройствах.

Разъемы PCI, чаще всего служат для подачи дополнительного питания на разного рода PCI express устройства (наиболее распространены для видеокарт).

Перейдем непосредственно к распиновке и маркировке. Где же наши заветные напряжения? А вот они!

Еще одна картинка с распиновкой и цветовым обозначением напряжений на разъемах БП.

Ниже приведена распиновка блока питания типа AT.

Ну вот. С распиновкой компьютерных блоков питания разобрались! Самое время перейти к тому, как получить необходимые напряжения из блока питания.

Получение напряжений с разъемов компьютерного блока питания

Теперь, когда мы знаем, где взять напряжения, воспользуемся таблицей, которую я привел ниже. Пользоваться ей надо следующим образом: положительное напряжение+ ноль= итого .

положительное ноль итого (разность)
+12В +12В
+5В -5В +10В
+12В +3,3В +8,7В
+3,3В -5В +8,3В
+12В +5В +7В
+5В +5В
+3,3В +3,3В
+5В +3,3В +1,7В

Важно помнить, что ток итогового напряжения будет определяться минимальным значением по использованным номиналам для его получения.

Также не забывайте, что для больших токов желательно использовать толстый провод.

Самое главное!!! Блок питания запускается замыканием проводов GND и PWR SW . Работает до тех пор, пока данные цепи замкнуты!

ПОМНИТЕ! Любые эксперименты с электричеством необходимо проводить со строгим соблюдением правил электробезопасности!!!

Дополнение по разъемам. Уточнение распиновки PCIe и EPS разъемов.

Автомобильное зарядное устройство или регулируемый лабораторный блок питания с напряжением на выходе 4 — 25 В и током до 12А можно сделать из не нужного компьютерного АТ или АТХ блока питания.

Несколько вариантов схем рассмотрим ниже:

Параметры

От компьютерного блока питания мощностью 200W, реально получить 10 — 12А.

Схема АТ блока питания на TL494

Несколько схем АТX блока питания на TL494

Переделка

Основная переделка заключается в следующем, все лишние провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты. Находим на плате микросхему с номером 494 , перед номером могут быть разные буквы DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к +5 В (это где был жгут красных проводов) и удаляем его.

Для регулируемого (4В – 25В) блока питания R1 должен быть 1к. Так же для блока питания желательно увеличить емкость электролита на выходе 12В (для зарядного устройства этот электролит лучше исключить), желтым пучком (+12 В) сделать несколько витков на ферритовом кольце (2000НМ, диаметром 25 мм не критично).

Так же следует иметь ввиду, что на 12 вольтовом выпрямителе стоит диодная сборка (либо 2 встречно включенных диода), рассчитанная на ток до 3 А, ее следует поменять на ту, которая стоит на 5 вольтовом выпрямителе, она расчитана до 10 А, 40 V , лучше поставить диодную сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2 встречно включенных мощных диода КД2999 или им подобным в таблице ниже.

Если БП АТХ для запуска необходимо соединить вывод soft-on с общим проводом (на разъём уходит зеленым проводом).Вентилятор нужно развернуть на 180 гр., что бы дул внутрь блока,если вы используете как блок питания, запитать вентилятор лучше с 12-ой ножки микросхемы через резистор 100 Ом.

Корпус желательно сделать из диэлектрика не забывая про вентиляционные отверстия их должно быть достаточно. Родной металлический корпус, используете на свой страх и риск.

Бывает при включении БП при большом токе может срабатывать защита, хотя у меня при 9А не срабатывает, если кто с этим столкнется следует сделать задержку нагрузки при включении на пару секунд.

Ещё один интересный вариант переделки компьютерного блока питания.

В этой схеме регулировка осуществляется напряжения (от 1 до 30 В.) и тока (от 0,1 до 10А).

Мельничук Василий Васильевич (UR5YW),
Григоряк Сергей Анатолиевич,

г. Черновцы, Украина.

При переделке компьютерных импульсных блоков питания (далее – ИБП) с управляющей микросхемой TL494 под блоки питания для питания трансиверов, радиоаппаратуры и зарядные устройства для автомобильных аккумуляторов , накопилась часть ИБП, которые были неисправны и не поддавались ремонту, работали нестабильно или имели управляющую микросхему другого типа.

Дошли руки и до оставшихся блоков питания, из них после недолгих экспериментов вывели технологию переделки под зарядные устройства (далее – ЗУ) для автомобильных аккумуляторов.
Также после выхода на электронную почту начали приходить письма с разными вопросами, мол, что и как, с чего начинать.

С чего начать?

Перед тем как приступить к переделке следует внимательно ознакомиться с книгой , в ней подробно изложено описание работы ИБП с управляющей микросхемой TL494. Также не лишним было бы посещение сайтов и , где подробно рассмотрены вопросы переделки компьютерных ИБП. Для тех радиолюбителей, которые не смогли найти указанную книгу попробуем «на пальцах» объяснить, как «укротить» ИБП.
И так обо всем по порядку.

Выходной выпрямитель с фильтром построен примерно по одной и той же схеме (Рис. 4) с незначительными вариациями. Выпрямители построены по двухполупериодной схеме со средней точкой, этим обеспечивается симметричный режим перемагничивания сердечника импульсного силового трансформатора Тр. Для уменьшения динамических коммутационных потерь в сильноточных каналах выпрямителей + 12 и + 5 В в качестве выпрямительных элементов используются диодные сборки из двух диодов Шоттки VD3 и VD4, так как они имеют очень маленькое время переключения, а прямое падение напряжения на диоде Шоттки составляет 0,3 – 0,4 В, что в отличие от обычного кремневого диода (прямое падение напряжения на котором составляет 0,8 – 1,2 В) при токе нагрузки 10 – 20 А дает выигрыш в КПД ИБП. Все выпрямленные напряжения сглаживаются LC фильтрами, который начинается с индуктивности. Обмотки дросселя для выпрямителей + 5, – 5, + 12 и – 12 В обычно наматывают на одном магнитопроводе.


ИБП вырабатывает основные напряжения +5 В, -5 В, +12 В, -12 В, в новых блоках АТХ еще + 3,3 В, сигнал Power good (PG) и др. Нас в первую очередь интересует канал выработки напряжения +12 В, с ним мы в основном и будем работать. Выходные напряжения ИБП подаются к узлам и блока компьютера с помощью разноцветных проводов, собранных в жгуты.
Шестиконтактные разъемы (отсутствуют в ИБП ряда АТХ) имеют следующую цветовую маркировку:

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


И так рассмотрим случай, когда АКБ еще не подсоединена. Напряжение сети переменного тока подается через терморезистор TR1, сетевой плавкий предохранитель FU1, помехоподавляющий фильтр к выпрямителю на диодной сборке VDS1. Выпрямленное напряжение сглаживается фильтром на конденсаторах С6, С7, на выходе выпрямителя получается напряжение + 310 В. Это напряжение подается к преобразователю напряжения на мощных ключевых транзисторах VT3, VT4 с импульсным силовым трансформатором Тр2. Сразу же оговоримся, что для нашего зарядного устройства резисторы R26, R27, предназначенные для приоткрывания транзисторов VT3, VT4, отсутствуют. Переходы база-эмиттер транзисторов VT3, VT4 зашунтированы цепями R21R22 и R24R25, соответственно, вследствие чего, транзисторы закрыты, преобразователь не работает, выходное напряжение отсутствует.

При подсоединении АКБ к выходным клеммам Кл1 и Кл2, при этом загорается светодиод VD12, напряжение подается через цепочку VD6R16 к выводу №12 для питания микросхемы МС1 и через цепочку VD5R12 к средней обмотке согласующего трансформатора Тр1 драйвера на транзисторах VT1, VT2. Управляющие импульсы с выводов 8 и 11 чипа МС1 поступают на драйвер VT1, VT2, и через согласующий трансформатор Тр1 к базовым цепям силовых ключевых транзисторов VT3, VT4, открывая их поочередно.

Переменное напряжение с вторичной обмотки силового трансформатора Тр2 канала выработки напряжения + 12 В поступает на двухполупериодный выпрямитель на сборке из двух диодов Шоттки VD11. Выпрямленное напряжение сглаживается LC фильтром L1C16 и поступает к выходным клеммам Кл1 и Кл2. С выхода выпрямителя также питается штатный вентилятор М1, предназначенный для охлаждения деталей ИБП, включенный через гасящий резистор R33 для уменьшения скорости вращения лопастей и шума вентилятора.

АКБ через клемму Кл2 подключена к минусу выхода выпрямителя ИБП через резистор R17. При протекании тока заряда от выпрямителя к АКБ, на резисторе R17 образуется падение напряжения, которое подается к выводу №16 одного из компараторов микросхемы МС1. При превышении тока заряда больше установленного уровня (движком резистора установки тока заряда R4), микросхема МС1 увеличивает паузу между выходными импульсами, уменьшая ток в нагрузку и тем самым стабилизируя ток зарядки АКБ.

Цепь R14R15 стабилизации выходного напряжения R14R15 подключена к выводу №1 второго компаратора микросхемы МС1, предназначена для ограничения его значения (на уровне + 14,2 – + 16 В) в случае отсоединения АКБ. При увеличении выходного напряжения выше установленного уровня, микросхема МС1 увеличит паузу между выходными импульсами, тем самым стабилизируя напряжения на выходе.
Микроамперметр РА1, с помощью переключателя SA1 подключается к разным точкам выпрямителя ИБП, используется для измерения тока заряда и напряжения на АКБ.

В качестве ШИМ-регулятора управления МС1 используется микросхема типа TL494 или ее аналоги: IR3M02 (SHARP, Япония), µА494 (FAIRCHILD, США), КА7500 (SAMSUNG, Корея), МВ3759 (FUJITSU, Япония, КР1114ЕУ4 (Россия).

За работу. Начинаем переделку!

Отпаиваем все провода с выходных разъемов, оставляем по пять проводов желтого цвета (канал выработки напряжения +12 В) и пять проводов черного цвета (GND, корпус, земля), по четыре провода каждого цвета скручиваем вместе и спаиваем, эти концы впоследствии будут подпаяны к выходным клеммам ЗУ.

Снимаем переключатель 115/230V и гнезда для подсоединения шнуров.
На месте верхнего гнезда устанавливаем микроамперметр РА1 на 150 – 200 мкА от кассетных магнитофонов, например М68501, М476/1. Родная шкала снята, вместо нее установлена самодельная шкала, изготовленная с помощью программы FrontDesigner_3.0, файлы шкал можно скачать с сайта журнала . Место нижнего гнезда закрываем жестью размерами 45×25 мм и сверлим отверстия для резистора R4 и переключателя рода измерений SA1. На задней панели корпуса устанавливаем клеммы Кл 1 и Кл 2.

Также, нужно обратить внимание на размер силового трансформатора, (на плате – тот который побольше), на нашей схеме (Рис. 5) это Тр 2. От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200 Вт .

В случае переделки ИБП типа АТ снимаем резисторы R26, R27 приоткрывающие транзисторы ключевого преобразователя напряжения VT3, VT4. В случае переделки ИБП типа АТХ снимаем с платы детали дежурного преобразователя.

Выпаиваем все детали кроме: цепей помехоподавляющего фильтра, высоковольтного выпрямителя VDS1, C6, C7, R18, R19, инвертора на транзисторах VT3, VT4, их базовых цепей, диодов VD9, VD10, цепей силового трансформатора Тр2, С8, С11, R28, драйвера на транзисторах VT3 или VT4, согласующего трансформатора Тр1, деталей С12, R29, VD11, L1, выходного выпрямителя, согласно схемы (Рис. 5).


У нас должна получиться плата примерно такого вида (Рис. 6). Даже если в качестве управляющего ШИМ-регулятора, переделываемого ИБП, используется микросхема типа DR-B2002, DR-B2003, DR-B2005, WT7514 или SG6105D проще их снять и сделать с нуля на TL494. Блок управления А1 изготавливаем в виде отдельной платы (Рис. 7).



Штатная диодная сборка в выпрямителе +12 В рассчитана на слишком слабый ток (6 – 12 А) – ее использовать не желательно, хотя для зарядного устройства вполне допустимо. На ее место можно установить диодную сборку из 5-ти вольтового выпрямителя (там она на больший ток рассчитана, но имеет обратное напряжение всего 40 В). Так как в некоторых случаях обратное напряжение на диодах в выпрямителе +12 В достигает значения 60 В! , лучше установить сборку на диодах Шоттки на ток 2×30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150 .

Конденсаторы выпрямителя 12-вольтовой цепи заменяем на рабочее напряжение 25 В (16-ти вольтовые нередко вздувались).

Индуктивность дросселя L1 должна быть в диапазоне 60 – 80 мкГн, его обязательно отпаиваем и измеряем индуктивность, часто попадались экземпляры и на 35 – 38 мкГн, с ними ИБП работает неустойчиво, жужжит при увеличении тока нагрузки больше 2 А. При слишком большой индуктивности, более 100 мкГн, может произойти пробой по обратному напряжению сборки диодов Шотки, если она была взята из 5-ти вольтового выпрямителя. Для улучшения охлаждения обмотки выпрямителя +12 В и кольцевого сердечника снимаем неиспользуемые обмотки для выпрямителей -5 В, -12 В и +3,3 В. Возможно придется домотать до оставшейся обмотки несколько витков провода до получения требуемой индуктивности (Рис. 8).


Если ключевые транзисторы VT3, VT4 были неисправными, а оригинальные не удается приобрести, то можно установить более распространенные транзисторы типа MJE13009. Транзисторы VT3, VT4 прикручены к радиатору, как правило, через изоляционную прокладку. Необходимо транзисторы снять и для увеличения теплового контакта, с обеих сторон прокладку промазать термопроводящей пастой. Диоды VD1 – VD6 рассчитанные на прямой ток не менее 0,1 А и обратное напряжение не менее 50 В, например КД522, КД521, КД510.

Все электролитические конденсаторы на шине +12 В заменяем на напряжение 25 В. При монтаже также надо учесть, что резисторы R17 и R32 в процессе работы блока нагреваются, их надо расположить поближе к вентилятору и подальше от проводов.
Светодиод VD12 можно приклеить к микроамперметру РА1 сверху для освещения его шкалы.

Наладка

При наладке ЗУ желательно воспользоваться осциллографом, он позволит увидеть импульсы в контрольных точках и поможет нам значительно сэкономить время. Проверяем монтаж на наличие ошибок. К выходным клеммам подключаем аккумуляторную батарею (далее – АКБ). В первую очередь проверяем наличие генерации на выводе №5 генератора пилообразного напряжения МС (Рис. 9).

Проверяем наличие указанных напряжений согласно схемы (Рис. 5)на выводах №2, №13 и №14 микросхемы МС1. Движок резистора R14 устанавливаем в положение максимального сопротивления, и проверяем наличие импульсов на выходе микросхемы МС1, на выводах №8 и №11 (Рис. 10).

Также проверяем форму сигнала между выводах №8 и №11 МС1 (Рис. 11), на осциллограмме видим паузу между импульсами, отсутствие симметрии импульсов может говорить о неисправности базовых цепей драйвера на транзисторах VT1, VT2.


Проверяем форму импульсов на коллекторах транзисторов VT1, VT2 (Рис. 12),

А также форму импульсов между коллекторами этих транзисторов (Рис. 13).


Отсутствие симметрии импульсов может говорить о неисправности самих транзисторов VT1, VT2, диодов VD1, VD2, перехода база-эмиттер транзисторов VT3, VT4 или их базовых цепей. Иногда пробой перехода база-эмиттер транзистора VT3 или VT4 приводит к выходу из строя резисторов R22, R25, диодного моста VDS1 и только потом к перегоранию предохранителя FU1.

Левый, по схеме, вывод резистора R14 подключаем в источнику образцового напряжения на 16 В (почему именно 16 В – чтобы скомпенсировать потери в проводах и на внутреннем сопротивлении сильно сульфатированной АКБ, хотя можно и 14,2 В). Уменьшая сопротивление резистора R14 до момента пропадания импульсов на выводах №8 и №11 МС, точнее в этот момент пауза становится равной полупериоду повторения импульсов.

Первое включение, тестирование

Правильно собранное, без ошибок, устройство запускается сразу, но в целях безопасности вместо сетевого предохранителя включаем лампу накаливания напряжением 220 В мощностью 100 Вт, она будет служить нам балластным резистором и в аварийной ситуации спасет детали схемы ИБП от повреждения.

Движок резистора R4 устанавливаем в положение минимального сопротивления, включаем зарядное устройство (ЗУ) в сеть, при этом лампа накаливания должна кратковременно вспыхнуть и погаснуть. При работе ЗУ на минимальном токе нагрузки радиаторы транзисторов VT3, VT4 и диодной сборки VD11 практически не нагреваются. При увеличении сопротивления резистора R4 начинает возрастать ток зарядки, при каком-то уровне вспыхнет лампа накаливания. Ну, вот и все, можно снимать ламу и ставить на место предохранитель FU1.

В случае если вы все-таки решились установить диодную сборку из 5-ти вольтового выпрямителя (повторимся, что она рассчитана, но обратное напряжение всего 40 В!), включаем ИБП в сеть на одну минуту, а движком резистором R4 устанавливаем ток в нагрузку 2 – 3 А, выключаем ИБП. Радиатор с диодной сборкой должен быть теплым, но ни в коем случае горячим. Если он горячий – значит, данная диодная сборка в данном ИБП долго не проработает и обязательно выйдет из строя.

Проверяем ЗУ на максимальном токе в нагрузку, для этого удобно использовать устройство , подключенное параллельно АКБ, которое позволит не испортить батарею длительными зарядами во время наладки ЗУ. Для увеличения максимального тока зарядки, можно несколько увеличить сопротивления резистора R4, но при этом не следует превышать максимальную мощность на которую рассчитан ИБП.
Подбором сопротивлений резисторов R34 и R35 устанавливаем пределы измерения для вольтметра и амперметра соответственно.

Фотки

Монтаж собранного устройства показан на (Рис. 14).



Теперь можно закрывать крышку. Внешний вид ЗУ показан на (Рис. 15).